# Cell Analysis Probes & Assay Kits

FLOW CYTOMETRY · FLUORESCENCE IMAGING · HIGH CONTENT ANALYSIS





# **Table of Contents**

2

5

25

33

# Section 1 General Information

# Section 2 Tools for Fluorescence Imaging & Flow Cytometry

| iFluor™ Fluorescent Labeling Dyes                   | 7  |
|-----------------------------------------------------|----|
| mFluor™ Fluorescent Labeling Dyes                   | 8  |
| ReadiLink <sup>™</sup> Antibody Labeling Technology |    |
| Anti-IgG Secondary Antibodies                       | 11 |
| trFluor <sup>™</sup> Dye-Labeled Antibodies         |    |
| Streptavidin Conjugates                             | 14 |
| trFluor™ Dye-Labeled Streptavidins                  |    |
| Enzyme-Labeled Streptavidins                        |    |
| FluoroQuest <sup>™</sup> Anti-Fading Reagents       |    |
| ·                                                   |    |

# Section 3 Cell Labeling and Tracking Probes

| Live Cell Labeling Probes       | 19 |
|---------------------------------|----|
| Live Cell Tracking Kits         | 20 |
| Fixable Dead Cell Staining Kits | 21 |
| Cell Proliferation Probes       |    |
| Cell Cycle Assays               | 24 |

# Section 4 Subcellular Compartment Labeling Probes

| Cell Nucleus Probes                                 | 27  |
|-----------------------------------------------------|-----|
| Cell Membrane Probes                                | .29 |
| Lysosome Staining Probes                            | .29 |
| Mitochondrial Staining Probes                       |     |
| iFluor™ Phalloidin Conjugates for Labeling F-actins | .32 |

# Section 5 Reporter Gene Analysis

| Firefly Luciferase Reporter Gene Assay | 35 |
|----------------------------------------|----|
| Gaussia Luciferase Reporter Gene Assay |    |
| Renilla Luciferase Reporter Gene Assay |    |
| Fluorimetric Beta-Galactosidase Assay  |    |

# Section 6 Index

| Alphabetical Index   | 38   |
|----------------------|------|
| Catalog Number Index | . 40 |

# **Trademarks of AAT Bioquest®**

AAT Bioquest® Amplite™ Apopxin™ Calcein Orange<sup>™</sup> Calcein Red<sup>™</sup> Cell Explorer<sup>™</sup> Cell Meter™ Cell Navigator™ CytoCalcein™ CytoTell™ Fluoroquest™ iFluor™ JC-10<sup>™</sup> mFluor™ Nuclear Green<sup>™</sup> Nuclear Orange<sup>™</sup> Nuclear Red<sup>™</sup> ReadiLink™ ReadiUse™ Stain IT<sup>™</sup> Tide Fluor™ Tide Quencher<sup>™</sup> trFluor™

# **Trademarks of Other Companies**

Alexa Fluor® (Invitrogen) Cy2®, Cy3®, Cy5®, Cy5.5® and Cy7® (GE Healthcare) DyLight™ (ThermoFisher) FACSCalibur™ (Becton Dickinson Biosciences) FlexStation® (Molecular Devices) FLIPR® (Molecular Devices) Horizon® (Becton Dickinson Biosciences) IRDye® (LI-COR) Krome Orange™ (Beckman Coulter) Lightning-Link® (Innova Biosciences) Luminex® (Luminex Corporation) LysoTracker® (Invitrogen) Pacific Blue®, Pacific Green® and Pacific Orange® (Invitrogen) Pluronic® (Wyandotte Chemicals) Texas Red®(Invitrogen)

# **BIOMOL GmbH**

Waidmannstraße 35 22769 Hamburg

info@biomol.de www.biomol.de

Fon: +49 (0)40-853 260 0 Fax: +49 (0)40-853 260 22

TOLL FREE IN GERMANY: Fon: 0800-246 66 51 · Fax: 0800-246 66 52

FOR MORE INFORMATION GET OUR NEWSLETTER: www.biomol.de/newsletter.html

# **Custom Products and Services**

### **Our Technologies**

**Amplite**<sup>™</sup> enzyme-based detection platform is optimized for measuring horseradish peroxidase (HRP), alkaline phosphates, luciferase, beta-galactosidase, lactamase, oxidase, protein kinases, protein phosphatases, phosphodiesterases, proteases, cytochrome P450, histone deacetylase (HDAC) and cell signaling molecules such as NAD/NADH, NADP/NADPH, IP<sub>3</sub>, cAMP and cGMP etc.

**Cell Explorer**<sup>™</sup> cell labeling platform is a complete set of tools for tracking live cells. This platform is also widely used for sorting mixed populations of cells.

*Cell Navigator*<sup>™</sup> cell staining platform is a complete set of tools for selective labeling subcellular structures of live, fixed and dead cells.

**Cell Meter**<sup>™</sup> cellular functional assay platform is a complete set of tools for functional analysis of cellular events and real timemonitoring of cell functions.

*iFluor*<sup>™</sup> superior fluorescent labeling dyes are optimized for labeling proteins and nucleic acids. This group of dyes span from UV to infrared wavelength with good photostability and brightness.

*mFluor*<sup>™</sup> superior fluorescent labeling dyes are optimized for flow cytometry applications.

**PhosphoWorks**<sup>™</sup> detection platform is a set of tools for detection of ATP, ADP, AMP, phosphate, pyrophosphate, phosphoproteins and phosphopeptides.

**Quest View™** colorimetric protease platform is a sensitive and robust tool for rapid detection of protease and glycosidase biomarkers. This technology platform has been licensed by a few diagnostic companies for developing rapid diagnostic tests.

**RatioWorks**<sup>™</sup> superior cellular dyes are a sensitive and robust tool set for ratio imaging and real time monitoring of cellular functions (such as pH and ions) in live cells.

**Screen Quest**<sup>™</sup> assay kits are a set of HTS-ready tools for high throughput screening of biochemical and cellular targets such as protein kinases, proteases, HDAC, cell apoptosis and cytotoxicity, GPCR, ion channels, ADME and transporters.

*Tide Fluor™ and Tide Quencher™* superior labeling dyes are specially optimized for labeling nucleotides and peptides. This platform offers the best value in the industry. It is second to none in terms of performance and cost. This technology platform has been licensed by a few diagnostic companies for developing IVD diagnostic tests.

**trFluor**<sup>™</sup> superior fluorescent labeling dyes are optimized for developing time-resolved fluorescence-based assays. It has been used for developing HTS assay technologies for many drug discovery targets.

#### **Our Services**

Besides the catalog products we also offer custom services to meet the distinct needs of each customer. Our current services include custom synthesis of biological detection probes, custom development of biochemical, cell-based and diagnostic assays, custom bioconjugation and custom high throughput screening of drug discovery targets.

#### **Custom Assay Design and Development**

At AAT Bioquest we not only make probes and assay kits, but also use them extensively ourselves. Scientists at AAT Bioquest are experts on assay design and have developed a wide variety of tests that range from biochemical detection to cellular functions. Our assay options include:

- Enzyme activities
- Binding assays
- · Cell-based assays
- · Microplate assays
- · Flow cytometric analysis
- Fluorescence imaging

#### Custom Conjugation

AAT Bioquest offers the best and the most rapid bioconjugation service in the industry.

- Biotinylation
- Fluorescence labeling (iFluor<sup>TM</sup>, mFluor<sup>TM</sup>, APC, RPE and PerCP)
- Enzyme labeling (AP and HRP)
- Small molecule conjugation

#### **Custom Screening**

AAT Bioquest offers on-demand high-throughput screening and pharmacology profiling assays with multiple methodologies. Functional assays are designed, validated and customized to the needs of our pharmaceutical and biotechnology industry clients. These assays are aimed at assessing and monitoring the efficacy, tolerability and safety parameters of candidate compounds for treating and/or diagnosing cancer, infectious disease, autoimmunity and transplantation. Our screening options include:

- Full assay development for a target of your choice
- Optimization of your assay protocol for HTS
- Multiple assay platforms and detection methods
- Custom data analysis

#### **Custom Synthesis of Fluorophores and Luminophores**

AAT Bioquest is recognized by the top pharmaceutical companies and diagnostic companies as a key provider of novel fluorescent dyes and luminescent probes. Over the years we have developed and synthesized many enabling fluorescent and luminescent probes for running a variety of challenging biological detection tasks.

# **Tools for Fluorescence Imaging & Flow Cytometry**

# imaging & flow cytometry tools at-a-glance

|                          | Fluorescence Imaging                      | Flow Cytometry                                    |
|--------------------------|-------------------------------------------|---------------------------------------------------|
| Anti-Fading Reagents     | Fluoroquest™ Reagents                     |                                                   |
| <b>Conjugation Tools</b> | ReadiLink™ Kits                           | ReadiLink™ Kits                                   |
| Fluorescent Tags         | iFluor™ Dyes<br>trFluor™ Dyes             | iFluor™ Dyes<br>mFluor™ Dyes                      |
| Secondary Antibodies     | iFluor™ Conjugates<br>trFluor™ Conjugates | iFluor™ Conjugates<br>mFluor™ Conjugates          |
| Streptavidin Conjugate   | iFluor™ Conjugates<br>trFluor™ Conjugates | iFluor™ Conjugates<br>Phycobiliprotein Conjugates |

# **Tools for Fluorescence Imaging & Flow Cytometry**

# 2.1 iFluor<sup>™</sup> Dyes, Optimized for Labeling Antibodies

AAT Bioquest is rapidly expanding our product lines to meet your constantly changing research needs. We have been developing fluorescent dyes to solve various limitations with the existing fluorescent labeling reagents while offering classic fluorescent labeling reagents with high purity and competitive price to help you to get more research done with less money.

iFluor<sup>™</sup> dyes are the products of our recent R&D efforts. They are a series of excellent fluorescent labeling dyes that span the full UV-visible and near IR spectrum. All the iFluor<sup>™</sup> dyes have excellent water solubility. Their hydrophilic property makes their protein conjugation readily performed in aqueous media, minimizing the use of organic solvents. The resulted conjugates are resistant to precipitation during storage. iFluor<sup>™</sup> dyes also have much better labeling performance than the classic fluorescent labeling dyes such as FITC, TRITC, Texas Red<sup>®</sup>, Cy3<sup>®</sup>, Cy5<sup>®</sup> and Cy7<sup>®</sup>. Some of our iFluor<sup>™</sup> dyes significantly outperform Alexa Fluor<sup>®</sup> labeling dyes on certain antibodies.

# Key Features of iFluor<sup>™</sup> Dyes

- Excellent water solubility
- Available in a variety of fluorescence colors
- Their conjugates exhibit more intense fluorescence than other spectrally similar conjugates of classic fluorescent dyes
- More photostable than the classic fluorescent dyes
- Absorption spectra match the principal output wavelengths of common excitation sources
- Robust and highly fluorescent over a broad pH range

### Table 2.1 iFluor™ Dye Equivalents of Common Dyes

| If you are using                                                               | Try this iFluor™ dye |
|--------------------------------------------------------------------------------|----------------------|
| Alexa Fluor <sup>®</sup> 350, AMCA, DyLight <sup>™</sup> 350                   | iFluor™ 350          |
| Alexa Fluor <sup>®</sup> 405, DyLight <sup>™</sup> 405                         | iFluor™ 405          |
| Alexa Fluor® 488, Cy2®, FITC, DyLight™ 488                                     | iFluor™ 488          |
| Alexa Fluor <sup>®</sup> 514                                                   | iFluor™ 514          |
| Alexa Fluor® 532                                                               | iFluor™ 532          |
| Alexa Fluor® 555, Cy3®, DyLight™ 550, TRITC                                    | iFluor™ 555          |
| Alexa Fluor® 594, DyLight™ 594, Texas Red®                                     | iFluor™ 594          |
| Alexa Fluor® 633, DyLight™ 633                                                 | iFluor™ 633          |
| Alxea Fluor® 647, Cy5®, DyLight™ 650                                           | iFluor™ 647          |
| Alexa Fluor® 680, Cy5.5®, IRDye® 700, DyLight™ 680                             | iFluor™ 680          |
| Alexa Fluor® 700                                                               | iFluor™ 700          |
| Alexa Fluor® 750, Cy7®, DyLight™ 750                                           | iFluor™ 750          |
| Alexa Fluor <sup>®</sup> 790, DyLight <sup>™</sup> 800, IRDye <sup>®</sup> 800 | iFluor™ 790          |

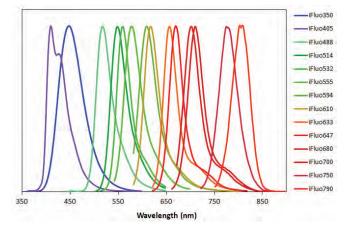



Figure 2.1. The normalized fluorescence spectra of iFluor<sup>™</sup> dyes in PBS buffer (pH 7.2)

#### Table 2.2 Amine-Reactive iFluor™ Dyes for Labeling Antibodies

| Cat. # | Product Name                   | Size | Ex (nm) | Em (nm) |
|--------|--------------------------------|------|---------|---------|
| 1020   | iFluor™ 350 succinimidyl ester | 1 mg | 345     | 442     |
| 1021   | iFluor™ 405 succinimidyl ester | 1 mg | 401     | 420     |
| 1023   | iFluor™ 488 succinimidyl ester | 1 mg | 491     | 514     |
| 1024   | iFluor™ 514 succinimidyl ester | 1 mg | 518     | 542     |
| 1025   | iFluor™ 532 succinimidyl ester | 1 mg | 542     | 558     |
| 1028   | iFluor™ 555 succinimidyl ester | 1 mg | 559     | 569     |
| 1029   | iFluor™ 594 succinimidyl ester | 1 mg | 592     | 614     |
| 1038   | iFluor™ 610 succinimidyl ester | 1 mg | 605     | 627     |
| 1030   | iFluor™ 633 succinimidyl ester | 1 mg | 638     | 655     |
| 1031   | iFluor™ 647 succinimidyl ester | 1 mg | 654     | 674     |
| 1035   | iFluor™ 680 succinimidyl ester | 1 mg | 682     | 701     |
| 1036   | iFluor™ 700 succinimidyl ester | 1 mg | 693     | 713     |
| 1037   | iFluor™ 750 succinimidyl ester | 1 mg | 753     | 779     |
| 1368   | iFluor™ 790 succinimidyl ester | 1 mg | 782     | 811     |

### Table 2.3 Thiol-Reactive iFluor™ Dyes for Labeling Antibodies

| Cat. # | Product Name          | Size | Ex (nm) | Em (nm) |
|--------|-----------------------|------|---------|---------|
| 1060   | iFluor™ 350 maleimide | 1 mg | 345     | 442     |
| 1062   | iFluor™ 488 maleimide | 1 mg | 491     | 514     |
| 1063   | iFluor™ 555 maleimide | 1 mg | 559     | 569     |
| 1065   | iFluor™ 647 maleimide | 1 mg | 654     | 674     |
| 1066   | iFluor™ 680 maleimide | 1 mg | 682     | 701     |
| 1067   | iFluor™ 700 maleimide | 1 mg | 693     | 713     |
| 1068   | iFluor™ 750 maleimide | 1 mg | 753     | 779     |
| 1366   | iFluor™ 790 maleimide | 1 mg | 782     | 811     |

# 2.2 mFluor<sup>™</sup> Dyes, Optimized for Labeling Antibodies

mFluor<sup>™</sup> dyes are a series of excellent fluorescent labeling dyes that span the full UV-visible spectrum. All the mFluor<sup>™</sup> dyes are designed to be maximally excited by one of the major light sources equipped in flow cytometers (such as the violet laser at 405 nm, blue laser at 488 nm, green laser at 532 nm, yellow laser at 561 nm and red laser at 633 nm). They are excellent alternatives to the phycobiliprotein-based tandems that are quite difficult to be coupled to an antibody or other biomolecules. However, mFluor<sup>™</sup> dyes are dimmer than RPE, APC and PerCP.

### Key Features of mFluor™ Dyes

- Available in a variety of reactive forms
- Available in a few distinct fluorescence colors
- Much easier for conjugation, giving much higher conjugation yields than tandems
- Maximally excited by one of the major light sources (405, 488, 532, 561 and 633 nm) used in flow cytometers
- Much more photostable than the phycobiliprotein tandems
- Robust and highly fluorescent over a broad pH range with little pH sensitivity

#### Table 2.4 mFluor™ Dye Equivalents of Common Dyes

| If you are using                                                 | Try this mFluor™ dye |
|------------------------------------------------------------------|----------------------|
| Pacific Blue®                                                    | mFluor™ Violet 450   |
| AmCyan                                                           | mFluor™ Violet 510   |
| Pacific Orange <sup>®</sup> , Krome Orange™                      | mFluor™ Violet 540   |
| RPE                                                              | mFluor™ Blue 570     |
| APC-Cy5.5°, APC-Alexa Fluor° 680, APC-Alexa<br>Fluor° 700 tandem | mFluor™ Red 700      |
| APC-Cy7®, APC-Alexa Fluor® 750, APC-H7 tandem                    | mFluor™ Red 780      |

#### Table 2.5 Amine-Reactive mFluor<sup>™</sup> Dyes for Labeling Antibodies

| Cat. # | Product Name          | Size | Ex (nm) | Em (nm) |
|--------|-----------------------|------|---------|---------|
| 1160   | mFluor™ Blue 570 SE   | 1 mg | 553     | 570     |
| 1165   | mFluor™ Green 620 SE  | 1 mg | 523     | 617     |
| 1190   | mFluor™ Red 700 SE    | 1 mg | 657     | 700     |
| 1191   | mFluor™ Red 780 SE    | 1 mg | 629     | 780     |
| 1150   | mFluor™ Violet 450 SE | 1 mg | 403     | 454     |
| 1151   | mFluor™ Violet 510 SE | 1 mg | 414     | 508     |
| 1152   | mFluor™ Violet 540 SE | 1 mg | 399     | 550     |
| 1170   | mFluor™ Yellow 630 SE | 1 mg | 611     | 630     |

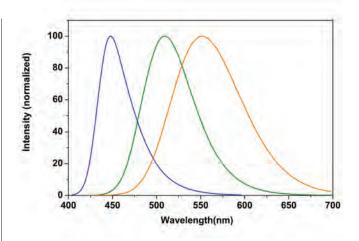



Figure 2.2. The normalized fluorescence spectra of mFluor<sup>™</sup> Violet 450, 510 and 540 (Cat# 1150, 1151, 1152).

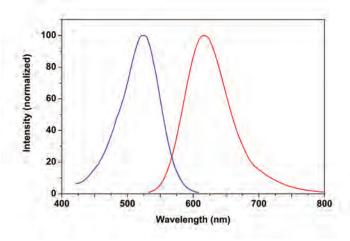



Figure 2.3. The excitation and emission spectra of mFluor<sup>™</sup> Green 620 Goat Anti-Rabbit IgG conjugate in PBS buffer (pH 7.2).

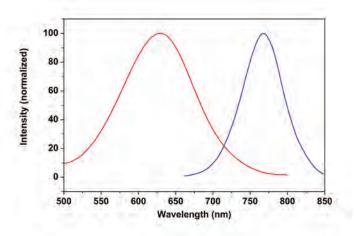
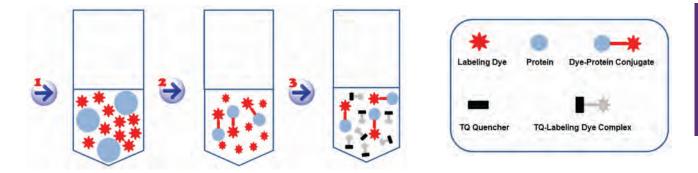




Figure 2.4. The excitation and emission spectra of mFluor<sup>™</sup> Red 780 Goat Anti-Rabbit IgG conjugate in PBS buffer (pH 7.2).

# 2.3 ReadiLink<sup>™</sup> Antibody Labeling Technology

ReadiLink<sup>™</sup> antibody labeling technology provides a convenient way to label antibodies using a stable reactive form of the iFluor<sup>™</sup> dyes or other fluorescent dyes (such as mFluor<sup>™</sup> dyes). The reactive iFluor<sup>™</sup> and mFluor<sup>™</sup> dyes show good reactivity and selectivity with the aliphatic amines of antibodies and forms a carboxamide bond, which is identical to and is as stable as the natural peptide bond. iFluor<sup>™</sup>and mFluor<sup>™</sup>-antibody conjugates may be used for immunofluorescent staining, fluorescent *in situ* hybridization, flow cytometry and other biological applications. Each kit comes with all the essential components for performing the conjugation reaction and for purifying the iFluor<sup>™</sup>- and mFluor<sup>™</sup>-antibody conjugates. ReadiLink<sup>™</sup> Kits only require two simple mixing steps to produce the desired conjugates for flow cytometry and fluorescence imaging applications. The conjugation kits provide the best method for readily labeling small amount of antibodies without requiring column purification.



#### Figure 2.5. ReadiLink™ Kit Labeling Principle

the background fluorescence interference of the free labeling dye.

- **Step 1.** Start the labeling reaction by mixing a labeling dye (red) with a protein (light blue) in a reaction buffer (pH 7.5-8.5).
- Step 2. Incubate the reaction solution and get a mixture of the desired protein conjugate (blue head with a red tail) and unreactive free dye (red).
  Step 3. Quench the reaction by mixing a non-fluorescent Tide Quencher™ (TQ, black) dye with the reaction solution. The TQ dye stops the reaction AND converts the unreactive free labeling dye to the non-fluorescent TQ-labeling dye complex (black head with a gray tail), which eliminates

# Key Features of ReadiLink<sup>™</sup> Kits

- · Convenient, all the components provided in the kits
- Robust, only two simple mixing steps required
- Rapid, less than 10-minute hands-on time

### Table 2.6 ReadiLink™ iFluor™ Labeling Kits

| Cat. # | Product Name                                 | Alternative to                                | Size        | Ex (nm) | Em (nm) |
|--------|----------------------------------------------|-----------------------------------------------|-------------|---------|---------|
| 1220   | ReadiLink™ iFluor™ 350 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 345     | 442     |
| 1255   | ReadiLink™ iFluor™ 488 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 491     | 514     |
| 1227   | ReadiLink™ iFluor™ 555 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 559     | 569     |
| 1230   | ReadiLink™ iFluor™ 594 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 592     | 614     |
| 1260   | ReadiLink™ iFluor™ 633 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 638     | 655     |
| 1235   | ReadiLink™ iFluor™ 647 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 654     | 674     |
| 1240   | ReadiLink™ iFluor™ 680 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 682     | 701     |
| 1245   | ReadiLink™ iFluor™ 700 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 693     | 713     |
| 1250   | ReadiLink™ iFluor™ 750 antibody labeling kit | Lightning-Link <sup>®</sup> dye labeling kits | 2 labelings | 753     | 779     |
| 1265   | ReadiLink™ iFluor™ 790 antibody labeling kit | Lightning-Link® dye labeling kits             | 2 labelings | 782     | 811     |

### Table 2.7 ReadiLink™ mFluor™ Labeling Kits

| Cat. # | Product Name                                                                                                             | Size        | Ex (nm) | Em (nm) |
|--------|--------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|
| 1120   | ReadiLink™ mFluor™ Blue 570 antibody labeling kit *microscale optimized for labeling 50 μg antibody per reaction*        | 2 labelings | 553     | 570     |
| 1123   | ReadiLink™ mFluor™ Green 620 antibody labeling kit *microscale optimized for label-<br>ing 50 µg antibody per reaction*  | 2 labelings | 522     | 617     |
| 1130   | ReadiLink™ mFluor™ Red 700 antibody labeling kit *microscale optimized for labeling 50 μg antibody per reaction*         | 2 labelings | 657     | 700     |
| 1131   | ReadiLink™ mFluor™ Red 780 antibody labeling kit *microscale optimized for labeling<br>50 µg antibody per reaction*      | 2 labelings | 629     | 780     |
| 1105   | ReadiLink™ mFluor™ Violet 420 antibody labeling kit *microscale optimized for label-<br>ing 50 μg antibody per reaction* | 2 labelings | 398     | 411     |
| 1100   | ReadiLink™ mFluor™ Violet 450 antibody labeling kit *microscale optimized for label-<br>ing 50 µg antibody per reaction* | 2 labelings | 403     | 454     |
| 1110   | ReadiLink™ mFluor™ Violet 510 antibody labeling kit *microscale optimized for label-<br>ing 50 µg antibody per reaction* | 2 labelings | 414     | 508     |
| 1114   | ReadiLink™ mFluor™ Violet 540 antibody labeling kit *microscale optimized for label-<br>ing 50 µg antibody per reaction* | 2 labelings | 405     | 537     |
| 1126   | ReadiLink™ mFluor™ Yellow 630 antibody labeling kit *microscale optimized for label-<br>ing 50 µg antibody per reaction* | 2 labelings | 561     | 630     |

# Table 2.8 Other ReadiLink<sup>™</sup> Labeling Kits

| Cat. # | Product Name                                                                                                                            | Size        | Ex (nm) | Em (nm) |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|
| 1311   | ReadiLink™ APC antibody labeling kit *microscale optimized for labeling 50 µg anti-<br>body per reaction*                               | 2 labelings | 651     | 662     |
| 5501   | ReadiLink™ BSA conjugation kit                                                                                                          | 1 kit       | N/A     | N/A     |
| 1299   | ReadiLink™ FITC antibody labeling kit *microscale optimized for labeling 50 µg anti-<br>body per reaction*                              | 2 labelings | 492     | 516     |
| 5502   | ReadiLink™ KLH conjugation kit                                                                                                          | 1 kit       | N/A     | N/A     |
| 1312   | ReadiLink™ PerCP antibody labeling kit *microscale optimized for labeling 50 µg<br>antibody per reaction*                               | 2 labelings | 482     | 677     |
| 5521   | ReadiLink <sup>™</sup> protein biotinylation kit *powered by ReadiView <sup>™</sup> biotin visionization technology <sup>*</sup>        | 1 kit       | N/A     | N/A     |
| 1310   | ReadiLink™ RPE antibody labeling kit *microscale optimized for labeling 50 µg anti-<br>body per reaction*                               | 2 labelings | 565     | 575     |
| 1300   | ReadiLink <sup>™</sup> trFluor <sup>™</sup> Eu antibody labeling kit *microscale optimized for labeling 50 µg<br>antibody per reaction* | 2 labelings | 346     | 617     |
| 1305   | ReadiLink™ trFluor™ Tb protein labeling kit *microscale optimized for labeling 50 µg<br>antibody per reaction*                          | 2 labelings | 330     | 544     |

# 2.4 Secondary Detection Reagents

# Anti-IgG Secondary Antibodies

A secondary antibody is used to detect an unconjugated primary antibody that has bound to a target antigen. Secondary antibodies conjugated to enzymes and labels are key components of detection systems. Selection of an optimum secondary antibody can improve staining and reduce false positive or negative staining. AAT Bioquest's range of secondary reagents has been carefully selected to provide optimum quality and flexibility. Secondary antibodies are available in many formats and are useful in a wide range of applications, including flow cytometry (iFluor<sup>™</sup>, mFluor<sup>™</sup>, FITC and RPE), immunocytochemistry (HRP & alkaline phosphatase) and Western blotting (HRP & Biotin).

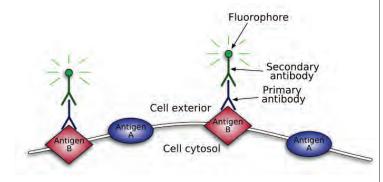



Figure 2.6. Secondary antibody action mechanism.

Cross-Adsorbed Secondary Antibodies: Some of our secondary antibodies have been adsorbed with animal or human IgG. These antibodies are designed for particular applications to reduce non-specific background staining. For example, if working with rat tissues or cells, choose a secondary antibody that has been adsorbed with rat serum or IgG. However, such adsorbed antibodies have greatly reduced epitope recognition and may recognize some subclasses of IgG very weakly, especially those subclasses which are most closely homologous to the species they were adsorbed against. For example, do not use an anti-mouse IgG that has been adsorbed against rat IgG unless you are trying to detect a mouse primary antibody in rat tissue that contains rat immunoglobulin, or in some other tissue in the presence of a rat primary antibody. Conversely, if you wish to detect a mouse primary antibody in the absence of rat immunoglobulins, it is best to use an anti-mouse secondary antibody that has not been adsorbed against rat.

Labeled Secondary Antibodies: In general, secondary antibodies can be either enzyme labeled (peroxidase and alkaline phosphatase), fluorescence labeled (FITC, iFluor™ and mFluor™) or biotin conjugated. Peroxidase is economical, rapid and more stable, while the alkaline phosphatase on the other hand is considered more sensitive than peroxidase particularly when colorimetric detection is used. Fluorescent labeled antibodies are commonly used for double or multiple staining methods.

*iFluor*<sup>™</sup> *Dye-Labeled Antibodies:* AAT Bioquest iFluor<sup>™</sup> dyes are optimized for labeling proteins, in particular, antibodies. These dyes are bright, photostable and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 405, 488, 555 and 633 nm). The almost identical spectral characteristics to those of Alexa Fluor<sup>®</sup> and DyLight<sup>™</sup> make iFluor<sup>™</sup>-labeled secondary antibody conjugates an excellent alternative to the anti-IgG conjugates of Alexa Fluor<sup>®</sup> and DyLight<sup>™</sup>.

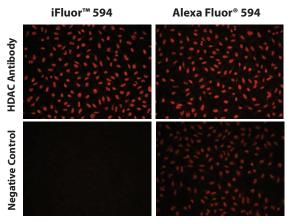



Figure 2.7. HeLa cells were stained with rabbit HDAC antibody and followed with iFluor™ 594 Goat Anti-Rabbit IgG conjugate (Cat# 16628) and Alexa Fluor® 594 Goat Anti-Rabbit IgG conjugate respectively under the same conditions. The iFluor™ 594 Goat Anti-Rabbit IgG conjugate (left panel) demonstrated much lower staining background than the corresponding Alexa Fluor® 594 (right panel).

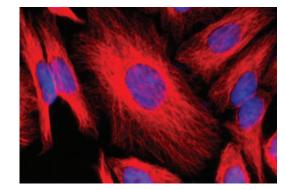



Figure 2.8. HeLa cells were stained with mouse anti-tubulin followed with iFluor™ 594 Goat Anti-Mouse IgG (red, Cat# 16468), and nuclei were stained with Hoechst 33342 (blue, Cat# 17530).

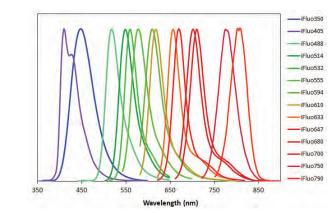
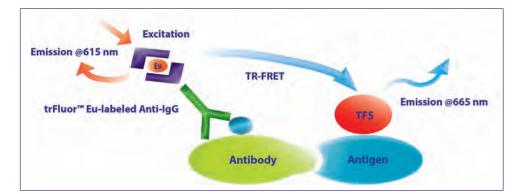


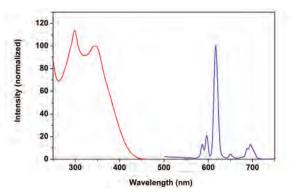

Figure 2.9. The normalized emission spectra of iFluor<sup>™</sup> labeled secondary antibodies.

# iFluor<sup>™</sup> Dye-Labeled Secondary Antibodies


# Table 2.9 iFluor™ Dye-Labeled Secondary Antibodies

| Cat. # | Product Name                                            | Size   | Ex (nm) | Em (nm) |
|--------|---------------------------------------------------------|--------|---------|---------|
| 16440  | iFluor™ 350 goat anti-mouse IgG (H+L)                   | 200 µg | 345     | 442     |
| 16444  | iFluor™ 405 goat anti-mouse lgG (H+L)                   | 200 µg | 401     | 420     |
| 16448  | iFluor™ 488 goat anti-mouse IgG (H+L)                   | 200 µg | 491     | 514     |
| 16460  | iFluor™ 555 goat anti-mouse lgG (H+L)                   | 200 µg | 559     | 569     |
| 16468  | iFluor™ 594 goat anti-mouse IgG (H+L)                   | 200 µg | 592     | 614     |
| 16478  | iFluor™ 633 goat anti-mouse lgG (H+L)                   | 200 µg | 638     | 655     |
| 16482  | iFluor™ 647 goat anti-mouse lgG (H+L)                   | 200 µg | 654     | 674     |
| 16486  | iFluor™ 680 goat anti-mouse IgG (H+L)                   | 200 µg | 682     | 701     |
| 16494  | iFluor™ 700 goat anti-mouse lgG (H+L)                   | 200 µg | 693     | 713     |
| 16506  | iFluor™ 750 goat anti-mouse lgG (H+L)                   | 200 µg | 753     | 779     |
| 16507  | iFluor™ 790 goat anti-mouse IgG (H+L)                   | 200 µg | 782     | 811     |
| 16520  | iFluor™ 350 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 345     | 442     |
| 16524  | iFluor™ 405 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 401     | 420     |
| 16528  | iFluor™ 488 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 491     | 514     |
| 16540  | iFluor™ 555 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 559     | 569     |
| 16548  | iFluor™ 594 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 592     | 614     |
| 16558  | iFluor™ 633 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 638     | 655     |
| 16562  | iFluor™ 647 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 654     | 674     |
| 16566  | iFluor™ 680 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 682     | 701     |
| 16574  | iFluor™ 700 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 693     | 713     |
| 16586  | iFluor™ 750 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 753     | 779     |
| 16587  | iFluor™ 790 goat anti-mouse IgG (H+L) *cross adsorbed*  | 200 µg | 782     | 811     |
| 16600  | iFluor™ 350 goat anti-rabbit IgG (H+L)                  | 200 µg | 345     | 442     |
| 16604  | iFluor™ 405 goat anti-rabbit IgG (H+L)                  | 200 µg | 401     | 420     |
| 16608  | iFluor™ 488 goat anti-rabbit IgG (H+L)                  | 200 µg | 491     | 514     |
| 16620  | iFluor™ 555 goat anti-rabbit IgG (H+L)                  | 200 µg | 559     | 569     |
| 16628  | iFluor™ 594 goat anti-rabbit IgG (H+L)                  | 200 µg | 592     | 614     |
| 16638  | iFluor™ 633 goat anti-rabbit IgG (H+L)                  | 200 µg | 638     | 655     |
| 16642  | iFluor™ 647 goat anti-rabbit IgG (H+L)                  | 200 µg | 654     | 674     |
| 16646  | iFluor™ 680 goat anti-rabbit IgG (H+L)                  | 200 µg | 682     | 701     |
| 16652  | iFluor™ 700 goat anti-rabbit lgG (H+L)                  | 200 µg | 693     | 713     |
| 16660  | iFluor™ 750 goat anti-rabbit IgG (H+L)                  | 200 µg | 753     | 779     |
| 16661  | iFluor™ 790 goat anti-rabbit IgG (H+L)                  | 200 µg | 782     | 811     |
| 16670  | iFluor™ 350 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 345     | 442     |
| 16674  | iFluor™ 405 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 401     | 420     |
| 16678  | iFluor™ 488 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 491     | 514     |
| 16690  | iFluor™ 555 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 559     | 569     |
| 16698  | iFluor™ 594 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 592     | 614     |
| 16704  | iFluor™ 633 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 638     | 655     |
| 16710  | iFluor™ 647 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 654     | 674     |
| 16712  | iFluor™ 680 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 682     | 701     |
| 16714  | iFluor™ 700 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 693     | 713     |
| 16720  | iFluor™ 750 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 753     | 779     |
| 16721  | iFluor™ 790 goat anti-rabbit IgG (H+L) *cross adsorbed* | 200 µg | 782     | 811     |

trFluor<sup>™</sup> Dye-Labeled Antibodies: Many biological compounds present in cells, serum or other biological fluids are naturally fluorescent, and thus the use of conventional, prompt fluorophores leads to serious limitations in assay sensitivity due to the high background caused by the autofluorescence of the biological molecules to be assayed. The use of long-lived fluorophores combined with time-resolved detection (a delay between excitation and emission detection) minimizes prompt fluorescence interferences. Our trFluor™ probes enable time-resolved fluorometry (TRF) for the assays that require high sensitivity. trFluor™ probes have large Stokes shifts and extremely long emission half-lives when compared to more traditional fluorophores such as Alexa Fluor® or cyanine dyes. Compared to the other TRF compounds, our trFluor™ probes have relatively high stability, high emission yield and the ability to be linked to biomolecules. The trFluor<sup>™</sup> anti-mouse IgG (H+L) conjugates are commonly used as second step reagents.


### Key Features of trFluor<sup>™</sup> Dyes

- No fluoride addition is required
- No enhancing solution is required
- Available in a variety of reactive forms
- Much easier to be conjugated to biomolecules •
- Much higher conjugation yield than other TRF dyes
- Maximally excited by the common light sources at ~350 nm •
- trFluor<sup>™</sup> Eu dye is optimized to pair with APC, iFluor<sup>™</sup> 647, TF5, Cy5<sup>®</sup>, DyLight<sup>™</sup> 650 and Alexa Fluor<sup>®</sup> 647
- trFluor<sup>™</sup> Tb dye is optimized to pair with FITC, iFluor<sup>™</sup> 488, TF2, DyLight<sup>™</sup> 488 and Alexa Fluor<sup>®</sup> 488



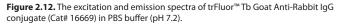

140

Figure 2.10. TR-FRET assay principle using trFluor™ Eu as the donor and Tide Fluor™ 5 (TF5) as the acceptor.



120 Intensity (normalized 100 80 60 40 20 0 300 400 500 600 700 800 Wavelength (nm)

Figure 2.11. The excitation and emission spectra of trFluor<sup>™</sup> Eu Goat Anti-Rabbit IgG conjugate (Cat# 16668) in PBS buffer (pH 7.2).



| Cat. # | Product Name                                            | Size   | Ex (nm) | Em (nm) |
|--------|---------------------------------------------------------|--------|---------|---------|
| 16518  | trFluor™ Eu goat anti-mouse IgG (H+L)                   | 100 µg | 346     | 617     |
| 16668  | trFluor™ Eu goat anti-rabbit IgG (H+L)                  | 100 µg | 346     | 617     |
| 16725  | trFluor™ Eu goat anti-rabbit IgG (H+L) *cross adsorbed* | 100 µg | 346     | 617     |
| 16519  | trFluor™Tb goat anti-mouse IgG (H+L)                    | 100 µg | 330     | 544     |
| 16599  | trFluor™Tb goat anti-mouse IgG (H+L) *cross adsorbed*   | 100 µg | 330     | 544     |
| 16669  | trFluor™Tb goat anti-rabbit IgG (H+L)                   | 100 µg | 330     | 544     |
| 16726  | trFluor™Tb goat anti-rabbit IgG (H+L) *cross adsorbed*  | 100 µg | 330     | 544     |
|        |                                                         |        |         |         |

#### Table 2.10 trFluor<sup>™</sup> Dye-Labeled Antibodies

#### **Streptavidin Conjugates**

The avidin/streptavidin-biotin interaction is the strongest known non-covalent biological interaction ( $K_d = 10^{-15}$  M) between a protein and its ligand. One avidin binds four biotins as shown in Figure 2.13. The bond formation between biotin and avidin/streptavidin is very rapid and, once formed, is unaffected by pH, organic solvents and other denaturing agents. Both avidin and streptavidin have essentially irreversible biotin-binding properties since bound biotin can only be released by denaturing the subunits of the proteins. The tight and specific binding of biotin and its derivatives to various avidins has been extensively explored for a number of biological applications.

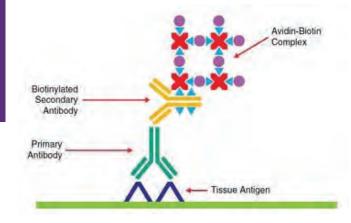



Figure 2.13. The streptavidin-based assay principle.

*iFluor*<sup>™</sup>*Dye-Labeled Streptavidins:* AAT Bioquest iFluor<sup>™</sup> dyes are optimized for labeling proteins. These dyes are bright, photostable and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 405, 488, 555 and 633 nm). The almost identical spectral characteristics make iFluor<sup>™</sup>-labeled streptavidin conjugates an excellent alternative to the streptavidin conjugates of Alexa Fluor<sup>®</sup> and DyLight<sup>™</sup>.

#### Table 2.11 iFluor™ Dye-Labeled Streptavidins

| Cat. # | Product Name                       | Size   | Ex (nm) | Em (nm) |
|--------|------------------------------------|--------|---------|---------|
| 16950  | iFluor™ 350-streptavidin conjugate | 200 µg | 345     | 442     |
| 16952  | iFluor™ 405-streptavidin conjugate | 200 µg | 401     | 420     |
| 16955  | iFluor™ 488-streptavidin conjugate | 200 µg | 491     | 514     |
| 16956  | iFluor™ 514-streptavidin conjugate | 200 µg | 518     | 542     |
| 16957  | iFluor™ 532-streptavidin conjugate | 200 µg | 542     | 558     |
| 16959  | iFluor™ 555-streptavidin conjugate | 200 µg | 559     | 569     |
| 16962  | iFluor™ 594-streptavidin conjugate | 200 µg | 592     | 614     |
| 16965  | iFluor™ 633-streptavidin conjugate | 200 µg | 638     | 655     |
| 16966  | iFluor™ 647-streptavidin conjugate | 200 µg | 654     | 674     |
| 16968  | iFluor™ 680-streptavidin conjugate | 200 µg | 682     | 701     |
| 16970  | iFluor™ 700-streptavidin conjugate | 200 µg | 693     | 713     |
| 16973  | iFluor™ 750-streptavidin conjugate | 200 µg | 753     | 779     |

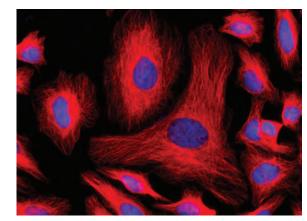



Figure 2.14. Image of tubulins in HeLa cells. Tubulins were stained using mouse anti-α-tubulin antibody followed with biotinylated Goat Anti-Mouse IgG staining, and visualized with red fluorescent iFluor™555-streptavidin conjugate (Cat# 16959). Nuclei were stained with blue fluorescent Hoechst 33342 (Cat# 17535).

**mFluor™ Dye-Labeled Streptavidins:** AAT Bioquest mFluor™ dyes are developed for multicolor flow cytometry-focused applications. These dyes have large Stokes Shifts, and can be well excited by the laser lines of flow cytometers (e.g., 405 nm, 488 nm and 633 nm). Our mFluor™ bioconjugates are excellent replacements to those of Pacific Blue™, Pacific Green™ and Pacific Orange™ due to their superior performance. Some of our mFluor™ conjugates are alternatives to the phycobiliprotein-dye tandems that are difficult to make.

#### Table 2.12 mFluor™ Dye-Labeled Streptavidins

| Cat. # | Product Name                              | Size   | Ex<br>(nm) | Em<br>(nm) |
|--------|-------------------------------------------|--------|------------|------------|
| 16935  | mFluor™ Blue 570-streptavidin conjugate   | 100 µg | 553        | 570        |
| 16938  | mFluor™ Green 620-streptavidin conjugate  | 100 µg | 523        | 617        |
| 16946  | mFluor™ Red 700-streptavidin conjugate    | 100 µg | 657        | 700        |
| 16948  | mFluor™ Red 780-streptavidin conjugate    | 100 µg | 629        | 780        |
| 16930  | mFluor™Violet 450-streptavidin conjugate  | 100 µg | 403        | 454        |
| 16931  | mFluor™Violet 510-streptavidin conjugate  | 100 µg | 414        | 508        |
| 16932  | mFluor™Violet 540-streptavidin conjugate  | 100 µg | 405        | 537        |
| 16942  | mFluor™ Yellow 630-streptavidin conjugate | 100 µg | 611        | 630        |

**Phycobiliprotein-Labeled Streptavidins:** AAT Bioquest's phycobiliprotein-streptavdin conjugates are optimized for multicolor flow cytometry applications. They can also be used for other multiplexing applications, e.g., with a variety of Luminex<sup>®</sup> bioanalytical platforms. The phycobiliproteins are composed of a number of subunits, each having a protein backbone to which linear tetrapyrrole chromophores are covalently bound. Phycoerythrins (red) and phycocyanins (blue) are the two major classes of phycobiliproteins. The absorption maxima for phycocrythrins (PE) lie between 490 and 570 nm while absorption maxima for phycocyanins (PC) are found between 610 and 665 nm. In general, phycobiliproteins have good long-term stability when stored refrigerated as ammonium sulfate precipitates. Phycobiliproteins are much more sensitive than the small organic dyes.

| Cat. # | Product Name                           | Size   | Ex (nm) | Em (nm) |
|--------|----------------------------------------|--------|---------|---------|
| 16908  | APC-iFluor™ 750-streptavidin conjugate | 100 µg | 651     | 779     |
| 16902  | APC-streptavidin conjugate             | 100 µg | 651     | 662     |
| 16905  | PerCP-streptavidin conjugate           | 100 µg | 482     | 667     |
| 16906  | RPE-iFluor™ 647-streptavidin conjugate | 100 µg | 565     | 674     |
| 16907  | RPE-iFluor™ 750-streptavidin conjugate | 100 µg | 565     | 779     |
| 16900  | RPE-streptavidin conjugate             | 100 µg | 565     | 575     |
| 16901  | RPE-streptavidin conjugate             | 1 mg   | 565     | 575     |

#### Table 2.13 Phycobiliprotein-Labeled Streptavidins

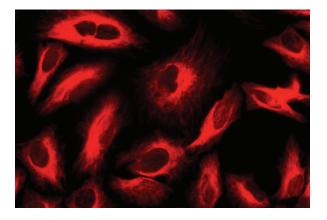



Figure 2.15. Image of tubulins in HeLa cells. Tubulins were stained using mouse anti- $\alpha$ -tubulin antibody followed with biotinylated Goat Anti-Mouse IgG staining, and visualized with red fluorescent RPE-streptavidin conjugate (Cat# 16901).

trFluor<sup>™</sup> Dye-Labeled Streptavidins: Many biological compounds present in cells, serum or other biological fluids are naturally fluorescent, and thus the use of conventional, prompt fluorophores leads to serious limitations in assay sensitivity due to the high background caused by the autofluorescence of the biological molecules to be assayed. The use of long-lived fluorophores combined with time-resolved detection (a delay between excitation and emission detection) minimizes prompt fluorescence interferences. Our trFluor™ probes enable time-resolved fluorometry (TRF) for the assays that require high sensitivity. trFluor<sup>™</sup> probes have large Stokes shifts and extremely long emission half-lives when compared to more traditional fluorophores such as Alexa Fluor® or cyanine dyes. Compared to the other TRF compounds, our trFluor™ probes have relatively high stability, high emission yield and ability to be linked to biomolecules. trFluor<sup>™</sup> -streptavidin conjugate comprises streptavidin (as the biotin-binding protein) with trFluor™ dye covalently attached (as the time-resolved red fluorescent europium label). It is commonly used as a second step reagent for indirect immunofluorescent staining, when used in conjunction with biotinylated primary antibodies. It is a very valuable tool for biotin-streptavidin-based biological assays and tests using TR-FRET platform. A variety of the complementary biotinylated reagents are available from numerous commercial vendors.

#### Table 2.14 trFluor<sup>™</sup> Dye-Labeled Streptavidins

| Cat. # | Product Name                       | Size   | Ex (nm) | Em (nm) |
|--------|------------------------------------|--------|---------|---------|
| 16925  | trFluor™ Eu-streptavidin conjugate | 100 µg | 346     | 617     |
| 16926  | trFluor™ Tb-streptavidin conjugate | 100 µg | 330     | 544     |

**Enzyme-Labeled Streptavidins:** Streptavidin conjugates are widely used together with a conjugate of biotin for specific detection of a variety of proteins, protein motifs, nucleic acids and other molecules since streptavidin has a very high binding affinity for biotin. The enzyme-streptavidin conjugate comprises streptavidin (as the biotin-binding protein) with an enzyme covalently attached (as the enzyme label). It is commonly used as a second step reagent for indirect immunofluorescent staining, when used in conjunction with an enzyme substrate (such as our sensitive fluorogenic ADHP substrate for HRP-streptavidin conjugate). It is a very valuable tool for biotin-streptavidin-based biological assays and tests. A variety of the complementary biotinylated reagents are available from numerous commercial vendors.

#### **Table 2.15 Enzyme-Labeled Streptavidins**

| Cat. # | Product Name               | Size |
|--------|----------------------------|------|
| 16921  | AP-streptavidin conjugate  | 1 mg |
| 16920  | HRP-streptavidin conjugate | 1 mg |

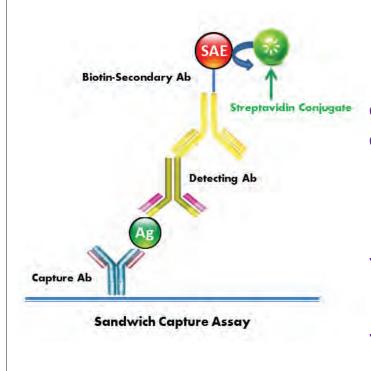



Figure 2.16. The sandwich ELISA assay principle. Enzyme- or fluorescence- labeled streptavidin conjugates (SAE) are used as the detection tags.

#### FluoroQuest<sup>™</sup> Anti-Fading Reagents

The photon output of a dye represents the average number of cycles of excitation followed by fluorescence emission that the dye goes through before it is irreversibly photobleached. The average photon output is defined by the ratio of fluorescence quantum efficiency to photobleaching quantum efficiency. When exposed to excitation light, fluorescence intensity of dyes decreases due to their photooxidation or other photoreactions. It is ideal to have the maximal ratio of fluorescence quantum efficiency to photobleaching quantum efficiency. However, very few fluorescent organic dyes can completely resist photobleaching. Frequently, when a section has been scanned repeatedly under strong excitation light, dyes could lose significant fluorescence signal before visual evaluation or photography can be accomplished. For example, the photobleaching of fluoresceins (such as FITC-labeled antibodies) has become a major problem in fluorescence microscopy. In severe cases (such as phycoprotein-labeled bioconjugates), a fluorescence image with high resolution cannot even be taken due to the extremely high photobleaching rate.

The main purpose of FluoroQuest<sup>™</sup> Anti-Fading Kits is to reduce the dye photobleaching rate, giving researchers longer observation time. The kits are recommended for fixed cells and tissues that have been stained with fluorescent dyes or their biological conjugates (such as dye-antibody conjugates). Cells can be viewed immediately. If long term storage is desired, the reagent can be allowed to harden overnight. However, the staining patterns of FluoroQuest<sup>™</sup> Anti-Fading Kits are sharper if viewed immediately. Our fluorescent reagents and assay kits have been extensively benchmarked for live cell analysis applications and are optimal for demanding cell analysis applications involving confocal microscopy, flow cytometry, microplate readers and HCS/HTS, where consistency and reproducibility are required.

FluoroQuest<sup>™</sup> Anti-Fading Kit I contains 3 sampler components for different imaging experiments. The components are all premixed and ready-to-use solutions. To be complementary to Kit I (the slide format), our FluoroQuest<sup>™</sup> Anti-Fading Kit II is optimized for the microplate format. Unlike Kit I, Kit II provides only one formulation specifically optimized for FITC based experiments.

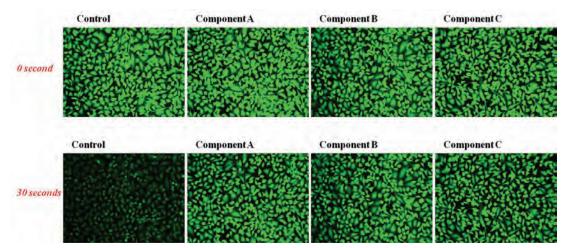



Figure 2.17. U2OS cells in a 96-well Costar black wall/clear bottom plate were loaded with 1 µM calcein, AM for 1 hour and fixed with 4% formaldehyde for 30 minutes. FluoroQuest™ Anti-Fading Kit 1 (Cat# 20001) were added to the samples after removing all the media. The FITC signals were compared at 0 and after 30 seconds exposure using an Olympus fluorescence microscope. The same exposure settings were used for all the images.

### Table 2.16 Fluorescence Imaging and Flow Cytometry Accessory Reagents

| Cat. # | Product Name                                                    | Size     |
|--------|-----------------------------------------------------------------|----------|
| 20001  | FluoroQuest™ anti-fading kit I                                  | 1 kit    |
| 20003  | FluoroQuest™ anti-fading kit II                                 | 1 kit    |
| 20006  | FluoroQuest <sup>™</sup> fluorescence signal enhancing solution | 5 mL     |
| 20004  | FluoroQuest™ mounting medium with DAPI                          | 50 mL    |
| 20053  | Pluronic <sup>®</sup> F-127 *10% solution in water*             | 10 mL    |
| 20052  | Pluronic <sup>®</sup> F-127 *20% solution in DMSO*              | 10 mL    |
| 20060  | Probenecid *cell culture tested*                                | 10x72 mg |
| 20010  | ReadiUse <sup>™</sup> 4% formaldehyde fixation solution         | 50 mL    |
| 20012  | ReadiUse™ mammalian cell lysis buffer *5X*                      | 10 mL    |
| 20009  | ReadiUse <sup>™</sup> microscope mounting solution              | 50 mL    |
| 20061  | ReadiUse™ probenecid, sodium salt *water-soluble*               | 10x77 mg |
| 20062  | ReadiUse™ probenecid *25 mM stabilized aqueous solution*        | 10x10 mL |

# **Cell Labeling and Tracking Probes**

# cell labeling and tracking probes at-a-glance\*

|                               | Fluorescence Imaging                     | Flow Cytometry                                                                        |
|-------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|
| Labeling Dead Cells           |                                          | 22500, 22501, 22502, 22600, 22601, 22602,<br>22603, 22604                             |
| Labeling Live Cells           | 22606, 22607, 22609, 22614, 22615, 22616 | 22606, 22607, 22609, 22614, 22615, 22616                                              |
| Monitoring Cell Proliferation |                                          | 22022, 22028, 22251, 22252, 22253, 22254,<br>22255, 22256, 22257, 22258, 22022, 22028 |
| Tracking Cell Cycles          |                                          | 22841, 22842                                                                          |
| Tracking Live Cells           | 22620, 22621, 22622, 22623, 22624        | 22620, 22621, 22622, 22623, 22624                                                     |

\* Products listed by catalog number

# **Cell Labeling and Tracking Probes**

# 3.1 Live Cell Labeling Probes

Properly labeling cells is one of the essential tasks for analyzing cells. Cell Explorer<sup>™</sup> fluorescence labeling kits are a set of tools which can be used to label cells for fluorescence microscopic and flow cytometric investigations of cellular functions. The effective labeling of cells provides a powerful method for studying cellular events in a spatial and temporal context.

Cell Explorer<sup>™</sup> Live Cell Labeling Kits are designed to uniformly label live cells with a proprietary dye whose fluorescence is strongly enhanced upon entering into live cells. The dye is a hydrophobic compound that easily permeates intact live cells. The hydrolysis of the weakly fluorescent substrate by intracellular esterases generates a strongly fluorescent hydrophilic product that is well-retained in the cell cytoplasm. Cells grown on black wall/clear bottom plates or slides can be stained and quantified in less than two hours. The kits can be readily adapted for a wide variety of fluorescence platforms such as microplate assays, flow cytometry and fluorescence microscope. They are useful for a variety of studies, including cell adhesion, chemotaxis, multidrug resistance, cell viability, apoptosis and cytotoxicity.

Our Cell Explorer<sup>™</sup> Live Cell Labeling Kits provide all the essential components with an optimized cell-labeling protocol, and can be used for both proliferating and non-proliferating cells (either suspension or adherent cells). A full set of different fluorescent dyes are used with our kits, providing an excellent tool set for multicolor cell analysis applications (see Figure 3.2). For example, kits 22614, 22615 and 22616 are optimized to use with a flow cytometer equipped with 405 nm violet laser.

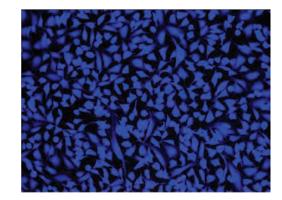
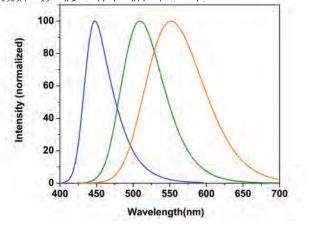




Figure 3.1. Image of HeLa cells stained with Cell Explorer™ Live Cell Labeling Kit (Cat#



**Figure 3.2.** The emission spectra of the live cell labeling probes (Ex = 405 nm) used in Cell Explorer<sup>™</sup> Live Cell Labeling Kits (Blue: Cat# 22614; Green: Cat# 22615; Orange: Cat# 22616).

# Table 3.1 Live Cell Labeling Probes and Assay Kits

| Cat. # | Product Name                                                                                   | Size     | Ex (nm) | Em (nm) |
|--------|------------------------------------------------------------------------------------------------|----------|---------|---------|
| 22004  | Calcein, AM *UltraPure grade*                                                                  | 20x50 µg | 495     | 515     |
| 22007  | Calcein blue, AM                                                                               | 1 mg     | 360     | 445     |
| 22009  | Calcein Orange™                                                                                | 1 mg     | 525     | 550     |
| 22010  | Calcein Red <sup>™</sup>                                                                       | 1 mg     | 646     | 659     |
| 22606  | Cell Explorer™ live cell labeling kit *blue fluorescence*                                      | 1 kit    | 360     | 445     |
| 22614  | Cell Explorer™ live cell labeling kit *blue fluorescence with 405 nm excitation*               | 1 kit    | 410     | 450     |
| 22607  | Cell Explorer™ live cell labeling kit *green Fluorescence*                                     | 1 kit    | 495     | 515     |
| 22615  | Cell Explorer <sup>™</sup> live cell labeling kit *green fluorescence with 405 nm excitation*  | 1 kit    | 410     | 500     |
| 22616  | Cell Explorer <sup>™</sup> live cell labeling kit *orange fluorescence with 405 nm excitation* | 1 kit    | 398     | 545     |
| 22609  | Cell Explorer <sup>™</sup> live cell labeling kit *red fluorescence*                           | 1 kit    | 646     | 659     |
| 22012  | CytoCalcein™Violet 450 *excited at 405 nm*                                                     | 1 mg     | 408     | 450     |
| 22013  | CytoCalcein™ Violet 500 *excited at 405 nm*                                                    | 1 mg     | 410     | 500     |
| 17540  | Nuclear Green™ LCS1                                                                            | 0.5 mL   | 503     | 526     |
| 17541  | Nuclear Orange™ LCS1                                                                           | 0.5 mL   | 514     | 555     |
| 17542  | Nuclear Red™LCS1                                                                               | 0.5 mL   | 622     | 645     |

# 3.2 Live Cell Tracking Kits

The effective labeling of cells offers a powerful method for studying cellular events in a spatial and temporal context. Labeling cells with a fluorescent tag that very well stays in cells provides an excellent tool for monitoring cells. Our Cell Explorer<sup>™</sup> Live Cell Tracking Kits use a set of proprietary fluorescent tracking dyes that get enhanced fluorescence upon entering into live cells. The dyes used in the kits are hydrophobic compounds that easily permeate intact live cells. The hydrolysis of the weakly fluorescent substrates by intracellular esterases generates strongly fluorescent hydrophilic products that are well-retained in the cell cytoplasm. Our cell tracking dyes have good photostability with robust imaging performance.

Cell Explorer<sup>™</sup> live cell tracking kits provide an effective tool of labeling cells for flow cytometric and fluorescence microscopic investigations of cellular functions. The kits are particularly suitable for multicolor flow cytometric analysis of cells. They can be used with all the common filter sets of fluorescence microscope and flow cytometers. For example, kits 22620, 22621, 22622, 22623 and 22624 are compatible with the common filter sets of AMCA, FITC, TRITC, Texas Red<sup>®</sup> and Cy5<sup>®</sup> respectively.

Our live cell tracking kits are useful for a variety of studies, including cell adhesion, chemotaxis, multidrug resistance, cell viability, apoptosis and cytotoxicity. They are suitable for proliferating and non-proliferating cells, and can be used for both suspension and adherent cells. The tracking kits provide all the essential components with an optimized cell-labeling protocol.

# **Key Features of Live Cell Tracking Kits**

- A full spectrum of colors available for multiplexing
- Compatible with either flow cytometry or fluorescence imaging
- Robust performance for tracking cells
- Minimal hands-on time required

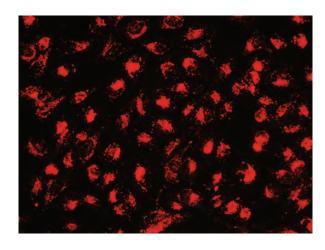
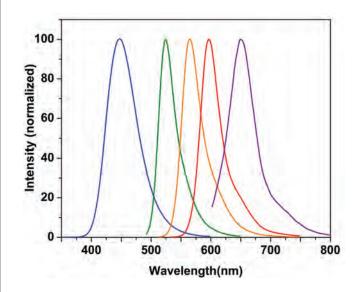




Figure 3.3. Image of HeLa cells stained with Cell Explorer<sup>™</sup> Live Cell Tracking Kit (Cat# 22623) in a 96-well Costar black wall/clear bottom plate.





### Table 3.2 Live Cell Tracking Kits

| Cat. # | Product Name                                                            | Size      | Ex (nm) | Em (nm) |
|--------|-------------------------------------------------------------------------|-----------|---------|---------|
| 22620  | Cell Explorer™ live cell tracking kit *blue fluorescence*               | 200 tests | 360     | 445     |
| 22624  | Cell Explorer™ live cell tracking kit *deep red fluorescence*           | 200 tests | 637     | 650     |
| 22621  | Cell Explorer™ live cell tracking kit *green fluorescence*              | 200 tests | 495     | 515     |
| 22622  | Cell Explorer <sup>™</sup> live cell tracking kit *orange fluorescence* | 200 tests | 528     | 541     |
| 22623  | Cell Explorer <sup>™</sup> live cell tracking kit *red fluorescence*    | 200 tests | 575     | 600     |

# **3.3 Fixable Dead Cell Staining Kits**

The effective labeling of cells provides a powerful method for studying cellular events in a spatial and temporal context. AAT Bioquest Cell Explorer™ Fixable Dead Cell Staining kits are a set of tools used to label cells for fluorescence microscopic and flow cytometric investigations of cellular functions.

Cell Explorer<sup>™</sup> Fixable Dead Cell Staining Kits employ cell components-reactive fluorescent stains to evaluate mammalian cell viability using flow cytometry and fluorescence microscope. In cells with compromised membranes, the stains react with cell components both in the cell interior and on the cell surface, yielding intense fluorescent staining. The proprietary stains used in the kits become more fluorescent upon binding to cellular components. These cell stains are not live cell-permeable. In viable cells, the stain's reactivity is restricted to the cell-surface components, resulting in less intense fluorescence. The difference in intensity between the live and dead cell populations is quite large, and the fluorescence intensity discrimination is completely preserved following formaldehyde fixation. Moreover, these stains use only one channel of a flow cytometer, making them compatible with multiparameter staining experiments for multiplexing applications.

The fluorescence signals of the stains used in the kits are pHindependent and quite photostable. The stains have much better water solubility, making the kits easier to use. Cell Explorer™ Fixable Dead Cell Staining Kits provide all the essential components with an optimized fixable dead cell staining protocol that requires minimal hands-on time.

# Key Features of Fixable Dead Cell Staining Kits

- A full spectrum of colors available for multiplexing
- Compatible with either flow cytometry or fluorescence imaging
- Minimal hands-on time required
- Robust performance for tracking cells

 $\mathsf{Country}_{\mathsf{FL1}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{FL1}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{FL1}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}} = \mathsf{Country}_{\mathsf{Country}}^{\mathsf{Country}} =$ 

Figure 3.5. Detection of Jurkat cell viability using Cell Explorer™ Fixable Dead Cell Staining Kit (Cat# 22601). Jurkat cells were treated and stained with Stain IT™ Green and then fixed with 3.7% formaldehyde and analyzed by flow cytometry. Live (blue solid peak), staurosporine treated (green line) and heat-treated (red solid peak)cells were distinguished with Ex/Em = 488/520 nm (FL1) channel. Nearly identical results were obtained before fixation.

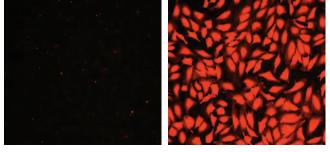



Figure 3.6. Images of HeLa cells stained with Cell Explorer<sup>™</sup> Fixable Dead Cell Staining Kit (Cat# 22603) in a 96-well Costar black wall/clear bottom plate. Left: Live HeLa cells; Right: Fixed HeLa cells.

| l<br>en<br>Je<br>Ils |  |
|----------------------|--|
| lts                  |  |
|                      |  |
|                      |  |

3

Cell Labeling and Tracking Probes

# Table 3.3 Fixable Dead Cell Staining Kits

| Cat. # | Product Name                                                                                           | Size  | Ex (nm) | Em (nm) |
|--------|--------------------------------------------------------------------------------------------------------|-------|---------|---------|
| 22600  | Cell Explorer™ fixable dead cell staining kit *blue fluorescence*                                      | 1 kit | 353     | 442     |
| 22500  | Cell Explorer <sup>™</sup> fixable dead cell staining kit *blue fluorescence with 405 nm excitation*   | 1 kit | 410     | 450     |
| 22604  | Cell Explorer™ fixable dead cell staining kit *deep red fluorescence*                                  | 1 kit | 649     | 660     |
| 22601  | Cell Explorer™ fixable dead cell staining kit *green fluorescence*                                     | 1 kit | 498     | 521     |
| 22501  | Cell Explorer <sup>™</sup> fixable dead cell staining kit *green fluorescence with 405 nm excitation*  | 1 kit | 408     | 512     |
| 22602  | Cell Explorer™ fixable dead cell staining kit *orange fluorescence*                                    | 1 kit | 547     | 573     |
| 22502  | Cell Explorer <sup>™</sup> fixable dead cell staining kit *orange fluorescence with 405 nm excitation* | 1 kit | 398     | 550     |
| 22603  | Cell Explorer™ fixable dead cell staining kit *red fluorescence*                                       | 1 kit | 583     | 603     |

# 3.4 Cell Proliferation Probes

### **CytoTell™Green**

Flow cytometry combined with fluorescence staining is a powerful tool to analyze heterogeneous cell populations. Among all the existing fluorescent dyes, CFSE is the preferred cell proliferation indicator that is widely used for live cell analysis. However, there are a few severe problems associated with the use of CFSE for monitoring cell proliferation. 1). CFSE is highly toxic to cells since CFSE indiscriminately reacts with all amino groups, thus affects many critical intracellular protein functions (such as cell membrane GPCRs); 2). CFSE has slow response and is inconvenient to use. The CFSE fluorescence intensity of the 2<sup>nd</sup> generation cells is decreased more than 10 fold from the 1<sup>st</sup> generation. You would have to wait for another generation to start the cell proliferation analysis; 3). Medium removal is required. You would have to remove medium for cell analysis with a flow cytometer since CFSE reacts with medium components.

CytoTell<sup>™</sup> Green is developed to eliminate the above CFSE limitations. CytoTell<sup>™</sup> Green can also be used for long term tracking of labeled cells. Analysis using two-parameter plots may provide better resolution of each generation, especially between undivided cells and the first generation. Cells labeled with CytoTell<sup>™</sup> Green may be fixed and permeabilized for analysis of intracellular targets using standard formaldehyde-containing fixatives and saponin-based permeabilization buffers. CytoTell<sup>™</sup> Green can be excited by the 488 nm blue laser line with the peak emission at 520 nm, which makes it compatible with the FITC filter set.

# Key Features of CytoTell<sup>™</sup>Green

- Spectrally similar to CFSE and FITC
- Much faster response to cell proliferation than CFSE
- More convenient to use than CFSE
- More sensitive than CFSE
- Much more stable than CFSE

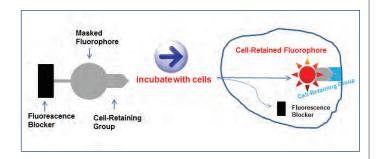



Figure 3.7. CytoTell<sup>™</sup> dye working principle. CytoTell<sup>™</sup> dye consists of three components: a). fluorescence blocker; b). masked fluorophore; and c). cell-retaining moiety. Upon entering live cells, the fluorescence of CytoTell<sup>™</sup> dye is released via the removal of fluorescence blocker, and the released fluorophore is retained in cells through the cell-retaining group.

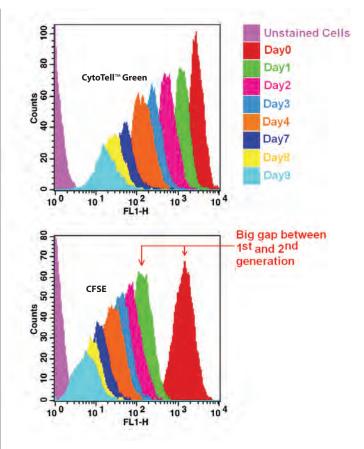



Figure 3.8. Cell tracking assays using CytoTell<sup>™</sup> Green (Cat# 22253) and CFSE (Cat# 22022). Jurkat cells (~2x10<sup>6</sup> cells/mL) were stained with CytoTell<sup>™</sup> Green or CFSE (0.5 µM) on Day 0. The cells were passed serially at 1:1 ratio for 9 days. Fluorescence intensity was measured with FACSCalibur<sup>™</sup> flow cytometer (BD, San Jose, CA) using FL1 channel on the day after passage. Successive generations were represented by different colors.

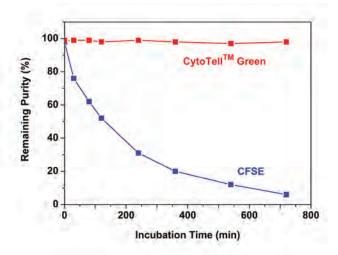
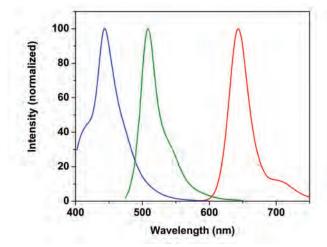
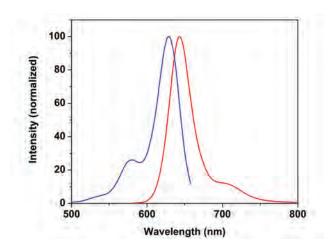




Figure 3.9. Stability comparison of CytoTell<sup>™</sup> Green (Cat# 22253) and CFSE (Cat# 22022). 5 mM PBS working solutions of CytoTell<sup>™</sup> Green and CFSE were monitored using HPLC (pH 7.2).

### CytoTell<sup>™</sup> Blue

Flow cytometry combined with fluorescence staining is a powerful tool to analyze heterogeneous cell populations. Among all the existing fluorescent dyes, CFSE is the preferred cell proliferation indicator that is widely used for live cell analysis. However, it is impossible to use CFSE and its fluorescein analogs for GFPtransfected cells or for the applications where a FITC-labeled antibody is used since CFSE and its fluorescein analogs have the excitation and emission spectra almost identical to those of GFP or FITC. CytoTell<sup>™</sup> dyes are well excited with major laser lines such as 405 nm, 488 nm or 633 nm laser line with multicolor emissions. They have minimal cytotoxicity and are used for the multicolor applications with either GFP cell lines or FITC-labeled antibodies since they have either excitation or emission spectra distinct from those of fluorescein. CytoTell<sup>™</sup> Blue is a blue fluorescent dye that stains cells evenly. It has a peak excitation of 405 nm and can be excited by the 405 nm violet laser line. Its peak emission of 450 nm can be detected with a 450/20 nm band pass filter (equivalent to Pacific Blue® or BD Horizon® V450), making it compatible with applications that use GFP or FITC antibodies for multicolor cell analysis.




**Figure 3.10.** Emission spectral comparison of CytoTell<sup>™</sup> Blue (Ex/Em = 403/454 nm, Cat# 22251), CytoTell<sup>™</sup> Green (Ex/Em = 511/525 nm, Cat# 22253), and CytoTell<sup>™</sup> Red (Ex/Em = 628/643 nm, Cat# 22255) in PBS buffer (pH 7.2).

### CytoTell<sup>™</sup>Red

CytoTell<sup>™</sup> Red is a red fluorescent dye that stains cells evenly. As cells divide, the dye is distributed equally between daughter cells

that can be measured as successive halving of the fluorescence intensity of the dye. Up to 8 generations of cells may be visualized using CytoTell<sup>™</sup> Red. CytoTell<sup>™</sup> Red can also be used for the long term tracking of labeled cells. CytoTell<sup>™</sup> Red has a peak excitation of 630 nm and can be well excited by the 633 nm red laser line. It has a peak emission of 660 nm and can be detected with a 660/20 nm band pass filter (equivalent to APC, Alexa Fluor<sup>®</sup> 647 or Cy5<sup>®</sup>), making it compatible with the applications that use GFP or FITC antibodies for multicolor cell analysis.



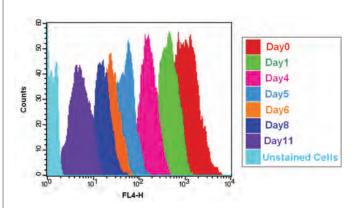
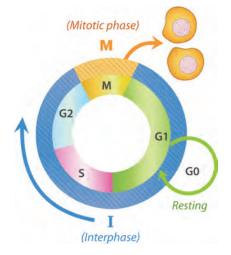


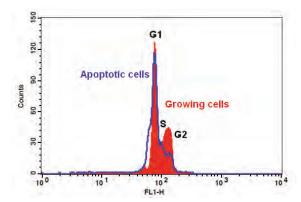

Figure 3.11. The excitation and emission spectra of CytoTell<sup>™</sup> Red (Cat# 22255) in PBS buffer (pH 7.2).


**Figure 3.12.** Cell tracking assay using CytoTell<sup>™</sup> Red (Cat# 22255). Jurkat cells (~ 2x10<sup>6</sup> cells/mL) were stained with CytoTell<sup>™</sup> Red (2 µM) on Day 0. The cells were passed serially at 1:1 ratio for 11 days. Fluorescence intensity was measured with FACSCalibur<sup>™</sup> flow cytometer (BD, San Jose, CA) in FL4 channel on the day after passage. Successive generations were represented by different colors.

#### **Table 3.4 Cell Proliferation Probes**

| Cat. # | Product Name                                                                      | Size      |
|--------|-----------------------------------------------------------------------------------|-----------|
| 22022  | CFSE [5-(and 6)-carboxyfluorescein diacetate, succinimidyl ester] *mixed isomers* | 25 mg     |
| 22251  | CytoTell™ Blue                                                                    | 500 tests |
| 22253  | CytoTell™ Green                                                                   | 500 tests |
| 22257  | CytoTell <sup>™</sup> Orange                                                      | 500 tests |
| 22255  | CytoTell™ Red                                                                     | 500 tests |

# 3.5 Cell Cycle Assays


The cell cycle has four sequential phases: G0/G1, S, G2, and M. During a cell's passage through cell cycle, its DNA is duplicated in S (synthesis) phase and distributed equally between two daughter cells in M (mitosis) phase. These two phases are separated by two gap phases: G0/G1 and G2. The two gap phases provide time for the cell to grow and double the mass of their proteins and organelles. They are also used by the cells to monitor internal and external conditions before proceeding with the next phase of cell cycle. The cell's passage through cell cycle is controlled by a host of different regulatory proteins.



**Figure 3.13.** Cell division is just one of several stages that a cell goes through during its lifetime. The cell cycle is a repeating series of events that include growth, DNA synthesis, and cell division. The cell cycle in prokaryotes is quite simple: the cell grows, its DNA replicates, and the cell divides. In eukaryotes, the cell cycle is more complicated. The diagram above represents the cell cycle of a eukaryotic cell. As you can see, the eukaryotic cell cycle has several phases. The mitosis phase (M) actually includes both mitosis and cytokinesis. This is when the nucleus and then the cytoplasm divide. The other three phases (G1, S, and G2) are generally grouped together as an interphase. During the interphase, the cell grows, performs routine life processes, and prepares to divide.

AAT Bioquest Cell Meter<sup>™</sup> assay kits are a set of tools for monitoring cell viability and proliferation. There are a variety of parameters that can be used for monitoring cell viability and proliferation. In normal cells, DNA density changes depending on whether the cell is growing, dividing, resting or performing its ordinary functions. The progression of the cell cycle is controlled by a complex interplay among various cell cycle regulators. These regulators activate transcription factors, which bind to DNA and turn on or off the production of proteins that result in cell division. Any misstep in this regulatory cascade causes abnormal cell proliferation which underlies many pathological conditions, such as tumor formation. Potential applications for live-cell studies are in the determination of cellular DNA content and cell cycle distribution for detecting variations in growth patterns, for monitoring apoptosis, and for evaluating tumor cell behavior and suppressor gene mechanisms.

Our Cell Meter<sup>™</sup> Fluorimetric Cell Cycle Assay Kits are designed to monitor cell cycle progression and proliferation by using our proprietary cell cycle dye in permeabilized and fixed cells. The dye passes through a permeabilized membrane and intercalates into cellular DNA. The signal intensity of the cell cycle dye is directly proportional to DNA content. The percentage of cells in a given sample that are in G0/G1, S and G2/M phases, as well as the cells in the sub-G1 phase prior to apoptosis can be monitored with a flow cytometer.



**Figure 3.14.** DNA profile in growing and camptothecin treated Jurkat cells. Jurkat cells were treated without (red) or with 20  $\mu$ M camptothecin (blue) in a 37 °C, 5% CO<sub>2</sub> incubator for about 8 hours, and assayed with Cell Meter<sup>™</sup> Fluorimetric Cell Cycle Assay kit (Cat# 22841) according to the kit instruction. The fluorescence intensity of Nuclear Green<sup>™</sup> LCS1 (Component A) was measured with a FACSCalibur<sup>™</sup> flow cytometer using the FL1 channel. In growing Jurkat cells, nuclei stained with Nuclear Green<sup>™</sup> LCS1 showed G1, S, and G2 phases (red). In camptothecin treated apoptotic cells (B), the fluorescence intensity of Nuclear Green<sup>™</sup> LCS1 was decreased, and both S and G2 phases were diminished.

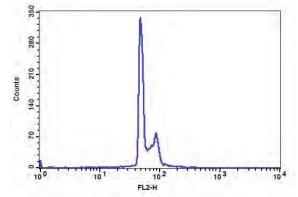



Figure 3.15. DNA profile in growing Jurkat cells. Jurkat cells were dye-loaded with Cell Meter<sup>™</sup> Fluorimetric Cell Cycle Assay kit (Cat# 22842) and RNase A for 30 minutes. The fluorescence intensity of Nuclear Red<sup>™</sup> CCS1 (Component A) was measured with the FACSCalibur<sup>™</sup> (Becton Dickinson, San Jose, CA) flow cytometer using the FL2 channel.

#### **Table 3.5 Cell Cycle Assays**

| Cat. # | Product Name                                                                                                | Size       | Ex<br>(nm) | Em<br>(nm) |
|--------|-------------------------------------------------------------------------------------------------------------|------------|------------|------------|
| 22841  | Cell Meter <sup>™</sup> fluorimetric cell cycle assay kit *green fluorescence optimized for flow cytometry* | 100 assays | 503        | 526        |
| 22842  | Cell Meter <sup>™</sup> fluorimetric cell cycle assay kit *red fluorescence optimized for flow cytometry*   | 100 assays | 535        | 617        |

# Subcellular Compartment Labeling Probes

# subcellular compartment labeling probes at-a-glance\*

|              | Blue                       | Green        | Red                                  | Deep Red                             |
|--------------|----------------------------|--------------|--------------------------------------|--------------------------------------|
| F-actin      | 22660, 23100, 23110, 23111 | 22661, 23115 | 22664, 23102, 23119, 23122,<br>23125 | 23127, 23128, 23129, 23130,<br>23131 |
| Lysosomes    | 22655                      | 22651, 22656 | 22657, 22658                         | 22659                                |
| Membrane     |                            | 22045        | 22073, 22102, 22190                  | 22070, 22077                         |
| Mitochondria |                            | 22210, 22666 | 22211, 22667, 22668, 22673,          | 22669                                |
| Nucleus      | 17510, 17514, 17520, 17530 | 17540, 17550 | 17515, 17542, 17552                  | 17501, 17561                         |

\* Products listed by catalog number

# **Selective Labeling of Subcellular Compartments**

The selective labeling of live cell compartments provides a powerful method for studying cellular events in a spatial and temporal context. AAT Bioquest's Cell Navigator<sup>™</sup> fluorescence imaging kits are a set of fluorescence imaging tools for labeling subcellular organelles such as membranes, lysosomes, mitochondria, nuclei, etc. Cell Navigator<sup>™</sup> fluorescence imaging kits provide all the essential components with an optimized cell-labeling protocol. They are suitable for proliferating and non-proliferating cells and can be used for both suspension and adherent cells.

# 4.1 Cell Nucleus Probes

The nucleus is the largest cellular organelle in animals. In mammalian cells, the average diameter of the nucleus is approximately 6 µm, which occupies about 10% of the total cell volume. Nucleus contains most of the cell's genetic material, organized as multiple long linear DNA molecules in complex with a large variety of proteins, such as histones, to form chromosomes. The genes within these chromosomes are the cell's nuclear genome. The function of the nucleus is to maintain the integrity of these genes and to control the activities of the cell by regulating gene expression, therefore, the nucleus is the control center of the cell. The main structures making up the nucleus are the nuclear envelope, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm, and the nucleoskeleton. Movement of large molecules such as proteins and RNA through the pores is required for both gene expression and the maintenance of chromosomes.

# Labeling the Nuclei of Live Cells

Both Hoechst 33258 and Hoechst 33342 are quite soluble in water and relatively nontoxic. They are cell membrane–permeant, minor groove–binding DNA stains that fluoresce bright blue upon binding to DNA. Hoechst 33342 has slightly higher membrane permeability than Hoechst 33258. These Hoechst dyes, which can be excited with the UV spectral lines of the argon-ion laser and by most conventional fluorescence excitation sources, exhibit relatively large Stokes shifts (excitation/emission maxima ~350/460 nm), making them suitable for multicolor labeling experiments. Hoechst 34580 can be better excited by violet laser at 405 nm.

DAPI is quite soluble in water but has limited solubility in PBS buffer. We offer both DAPI chloride and lactate salt. DAPI is an excellent nuclear counterstain, showing a distinct banding pattern in chromosomes. It is one of the most common nuclear dyes for staining nuclei in lives cells in combination with fluorescence imaging or flow cytometry. DAPI demonstrates blue fluorescence upon binding DNA and can be excited with a mercury-arc lamp or with the UV lines of the argon-ion laser. Binding of DAPI to dsDNA produces an ~20-fold fluorescence enhancement, apparently due to the displacement of water molecules from both DAPI and the minor groove.

LDS 751 has its peak excitation at ~543 nm on dsDNA. It can be excited by the argon-ion laser at 488 nm and is particularly useful in multicolor analyses due to its long-wavelength emission maximum

(~712 nm). Binding of LDS 751 to dsDNA results in an ~20-fold fluorescence enhancement. LDS 751 is a cell-permeant nucleic acid stain that has been used to discriminate intact nucleated cells from nonnucleated and damaged nucleated cells, as well as to identify distinct cell types in mixed populations of neutrophils, leukocytes and monocytes by flow cytometry.

Nuclear Green<sup>™</sup> LCS1, Nuclear Orange<sup>™</sup> LCS1, Nuclear Red<sup>™</sup> LCS1 and Nuclear Yellow are fluorogenic, DNA-selective and cell-permeant dyes for analyzing DNA content in living cells. The fluorescence of these dyes is significantly enhanced upon binding to DNA. They can be used in fluorescence imaging, microplate and flow cytometry applications. These DNA-binding dyes might be used for multicolor analysis of live cells with proper filter sets.

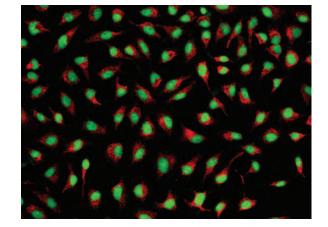
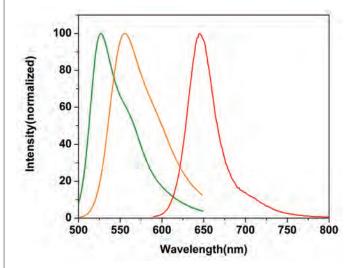
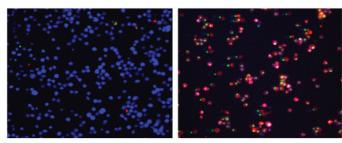



Figure 4.1. Images of live HeLa cells stained with Nuclear Green<sup>™</sup> LCS1 (Cat# 17540). The mitochondria of live HeLa cells were stained with red fluorescence Cell Navigator<sup>™</sup> Mitochondrion Staining Kit (Cat# 22668).





Figure 4.2. The emission spectral comparison of Nuclear Green™ LCS1 (Ex/Em = 503/526 nm, Cat# 17540), Nuclear Orange™ LCS1 (Ex/Em = 514/555 nm, Cat#17541), and Nuclear Red™ LCS1 (Ex/Em = 622/645 nm, Cat# 17542) bound to calf thymus DNA.

### Labeling the Nuclei of Dead Cells

Propidium iodide (PI) belongs to the same chemical class of ethidium bromide. As in the case of ethidium bromide, the fluorescence of PI is enhanced by 20-30-fold upon binding to nucleic acids. The fluorescence excitation maximum is red-shifted by 30–40 nm and the fluorescence emission maximum blue-shifted by 15 nm or so. PI also binds to RNA as DAPI and acridine orange. PI is cell-impermeable and commonly used for identifying dead cells in a population of cells and as a counterstain in multicolor fluorescent techniques. It can also be used to differentiate necrotic, apoptotic and normal cells. It is suitable for fluorescence microscopy, flow cytometry and fluorometry.

7-Amino actinomycin D (7-AAD) is another non-permeant dye that can be used to identify non-viable cells. 7-AAD is typically used with a flow cytometer. Cells with damaged plasma membranes or with impaired/no cell metabolism are unable to prevent the dye from entering the cell. Once inside the cell, the dyes bind to intracellular DNA producing highly fluorescent adducts which identify the cells as non-viable. 7-AAD is excited by the 488 nm laser line of an argon laser with fluorescence detected above 650 nm. Although the emission intensity of 7-AAD is lower than that of Pl, the longer wavelength emission may make it more useful for multiplexing assays in combination with other 488 nm-excited fluorochromes such as FITC and PE.

Nuclear Green<sup>™</sup> DCS1, Nuclear Orange<sup>™</sup> DCS1 and Nuclear Red<sup>™</sup> DCS1 are fluorogenic, DNA-selective and cell-impermeant dyes for analyzing DNA content in dead, fixed or apoptotic cells. As the LCS1 reagents, the fluorescence of the DCS1 dyes is significantly enhanced upon binding to DNA. They can be used in fluorescence imaging, microplate and flow cytometry applications. These DNA-binding dyes might be used for multicolor analysis of dead, fixed or apoptotic cells with proper filter sets.



A. Live cells

B. Apoptotic cells

Figure 4.3. The detection of binding activity of Apopxin<sup>™</sup> Deep Red to phosphatidylserine in Jurkat cells. The fluorescence image showing cells that are live (blue, stained by CytoCalcein<sup>™</sup> Violet 450, Cat# 22012), apoptotic (red, stained by Apopxin<sup>™</sup> Deep Red), and necrotic (green, stained by Nuclear Green<sup>™</sup> DCS1, Cat# 17550) induced by 1µM staurosporine for 3 hours. The fluorescence images of the cells were taken with Olympus fluorescence microscope using the violet, Cy5<sup>®</sup> and FITC channel respectively. A: Non-induced control cells; B: Triple staining of staurosporine-induced cells.

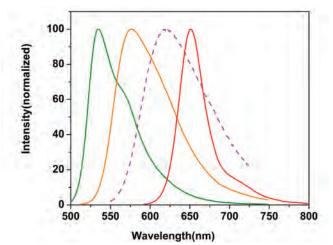



Figure 4.4. The emission spectral comparison of Nuclear Green™ DCS1 (Ex/Em = 503/526 nm, Cat# 17550), Nuclear Orange™ DCS1 (Ex/Em = 514/555 nm, Cat# 17551), and Nuclear Red™ DCS1 (Ex/Em = 622/645 nm, Cat# 17552) in the presence of calf thymus DNA. The dotted line is emission spectrum of propidium iodide bound to DNA (Ex/Em = 535/617 nm, Cat# 17515).

#### **Table 4.1 Cell Nuclear Stains**

| Cat. # | Product Name                                                           | Size   | Ex (nm) | Em (nm) |
|--------|------------------------------------------------------------------------|--------|---------|---------|
| 17501  | 7-AAD [7-Aminoactinomycin D]                                           | 1 mg   | 546     | 647     |
| 17510  | DAPI [4,6-Diamidino-2-phenylindole, dihydrochloride] *UltraPure grade* | 10 mg  | 358     | 461     |
| 17520  | Hoechst 33258 *UltraPure grade*                                        | 100 mg | 352     | 461     |
| 17530  | Hoechst 33342 *UltraPure grade*                                        | 100 mg | 350     | 461     |
| 17537  | Hoechst 34580 *UltraPure grade*                                        | 5 mg   | 368     | 437     |
| 17561  | LDS 751                                                                | 25 mg  | 543     | 712     |
| 17550  | Nuclear Green™ DCS1                                                    | 5 mM   | 503     | 526     |
| 17540  | Nuclear Green™ LCS1                                                    | 5 mM   | 503     | 526     |
| 17551  | Nuclear Orange™ DCS1                                                   | 5 mM   | 528     | 576     |
| 17541  | Nuclear Orange™ LCS1                                                   | 5 mM   | 514     | 555     |
| 17552  | Nuclear Red™ DCS1                                                      | 5 mM   | 631     | 651     |
| 17542  | Nuclear Red™ LCS1                                                      | 5 mM   | 622     | 645     |
| 17515  | Propidium iodide *UltraPure grade*                                     | 25 mg  | 535     | 617     |

# 4.2 Cell Membrane Probes

The cell membrane is a biological membrane that separates the interior of all cells from the outside environment. The cell membrane is selectively permeable to ions and organic molecules and controls the movement of substances in and out of cells. The basic function of the cell membrane is to protect the cell from its surroundings. It consists of the lipid bilayer with embedded proteins. Cell membranes are involved in a variety of cellular processes such as cell adhesion, ion conductivity and cell signaling and serve as the attachment surface for several extracellular structures, including the cell wall, glycocalyx and intracellular cytoskeleton.

The cationic carbocyanine dyes is one of the major classses of cell membrane probes. They accumulate on hyperpolarized membranes and are translocated into the lipid bilayer. Aggregation within the confined membrane interior usually results in decreased fluorescence, although the magnitude and even the direction of the fluorescence response are strongly dependent on the concentration of the dye and its structural characteristics. DiOC<sub>2</sub>(3) and DiOC<sub>s</sub>(3) have been the most widely used carbocyanine dye for membrane potential measurements. In flow cytometry measurements, the detected intensity of carbocyanine fluorescence is dependent not only on the membrane potential but also on cell size. In some cases, measurements of forward light scatter have been used to normalize the optical changes for cell size variability.

### **Table 4.2 Cell Membrane Probes**

| Cat. # | Product Name                       | Size   | Ex (nm) | Em (nm) |
|--------|------------------------------------|--------|---------|---------|
| 22033  | DiD                                | 10 mL  | 644     | 663     |
| 22101  | Dil iodide                         | 100 mg | 549     | 565     |
| 22102  | Dil perchlorate                    | 100 mg | 549     | 565     |
| 22103  | Dil triflate                       | 100 mg | 549     | 565     |
| 22056  | DilC <sub>1</sub> (5) iodide       | 25 mg  | 638     | 658     |
| 22050  | DiIC <sub>12</sub> (3)-DS          | 5 mg   | 555     | 570     |
| 22035  | DilC <sub>12</sub> (3) perchlorate | 25 mg  | 549     | 565     |
| 22051  | DiIC <sub>12</sub> (5)-DS          | 5 mg   | 650     | 670     |
| 22044  | DilC <sub>16</sub> (3) perchlorate | 25 mg  | 549     | 565     |
| 22052  | DiIC <sub>18</sub> (3)-DS          | 5 mg   | 555     | 570     |
| 22054  | DiIC <sub>18</sub> (5)-DS          | 5 mg   | 650     | 670     |
| 22066  | DiO perchlorate                    | 25 mg  | 484     | 501     |
| 22038  | DiOC <sub>2</sub> (3) iodide       | 25 mg  | 482     | 497     |
| 22039  | DiOC <sub>3</sub> (3) iodide       | 25 mg  | 482     | 497     |
| 22045  | DiOC <sub>5</sub> (3) iodide       | 25 mg  | 482     | 504     |
| 22046  | DiOC <sub>6</sub> (3) iodide       | 25 mg  | 482     | 504     |
| 22040  | DiOC <sub>7</sub> (3) iodide       | 25 mg  | 482     | 504     |
| 22042  | DiOC <sub>16</sub> (3) perchlorate | 25 mg  | 484     | 501     |
| 22070  | DiR iodide                         | 25 mg  | 748     | 780     |
| 22073  | DiSC <sub>2</sub> (3)              | 25 mg  | 560     | 571     |
| 22077  | DiSC <sub>2</sub> (7)              | 25 mg  | 770     | 790     |
| 22076  | DiSC <sub>3</sub> (5)              | 25 mg  | 660     | 675     |
| 22190  | Nile Red *UltraPure grade*         | 25 mg  | 552     | 636     |

# 4.3 Lysosome Staining Probes

Lysosomes are cellular organelles that contain acid hydrolase enzymes that break down waste materials and cellular debris. Lysosomes digest excess or worn-out organelles, food particles, and engulf viruses or bacteria. The membrane around a lysosome allows the digestive enzymes to work at the pH they require. Lysosomes fuse with autophagic vacuoles and dispense their enzymes into the autophagic vacuoles, digesting their contents. The size of a lysosome varies from 0.1–1.2 µm. At pH 4.8, the interior of the lysosomes is acidic compared to the slightly basic cytosol (pH 7.2). The lysosome maintains this pH differential by pumping protons from the cytosol across the membrane via proton pumps and chloride ion channels. The lysosomal membrane protects the cytosol, and therefore the rest of the cell, from the degradative enzymes within the lysosome. The cell is additionally protected from any lysosomal acid hydrolases that drain into the cytosol, as these enzymes are pH-sensitive and do not function well or at all in the alkaline environment of the cytosol. This ensures that cytosolic molecules and organelles are not lysed in case there is leakage of the hydrolytic enzymes from the lysosome.

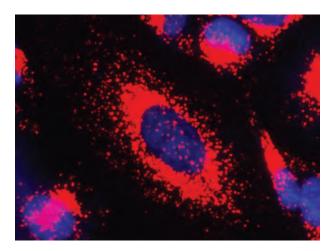



Figure 4.5. Image of HeLa cells stained with Cell Navigator™ Lysosome Staining Kit (Cat# 22658) in a Costar 96-well black wall/clear bottom plate. TRITC filter was used for imaging. Nuclei were stained with Hoechst 33342 (Cat# 17530).

Our Cell Navigator<sup>™</sup> Lysosome Staining Kits are designed to label lysosomes of live cells with LysoBrite<sup>™</sup> dyes, our proprietary lysotropic indicators which selectively accumulate in lysosomes probably via the lysosome pH gradient. The LysoBrite<sup>™</sup> dyes are hydrophobic compounds that easily permeate intact live cells, and trapped in lysosomes after they get into cells. Their fluorescence is significantly enhanced upon entering lysosomes. This key feature significantly reduces the staining background and makes the assay kits useful for a variety of studies, including cell adhesion, chemotaxis, multidrug resistance, cell viability, apoptosis and cytotoxicity. The Cell Navigator<sup>™</sup> staining kits are suitable for proliferating and non-proliferating cells, and can be used for both suspension and adherent cells. The labeling protocols are robust, requiring minimal hands-on time. The kits can be readily adapted for many types of fluorescence platforms such as microplate assays, flow cytometry and fluorescence microscope.

# Lysosome Staining Probes



- Minimal cytotoxicity (no cell toxicity observed)
- Multicolor wavelengths for multiplexing
- Enhanced signal intensity
- Extraordinarily high photostability
- Excellent cellular retention (more than 6 passages for cell tracking in Hela cells)
- Fixable (cell staining pattern survives fixation)

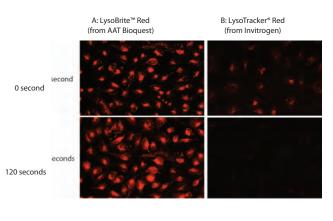



Figure 4.6. Images of HeLa cells stained with A: Cell Navigator™ Lysosome Staining Kit (Cat# 22658), B: LysoTracker® Red DND-99 (from Invitrogen) in a Costar black wall/clear bottom 96-well plate. The signals were compared at 0 and 120 seconds exposure time by using an Olympus fluorescence microscope.

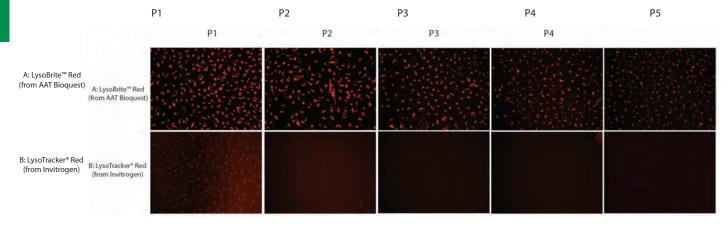



Figure 4.7. Images of HeLa cells stained with A: Cell Navigator™ Lysosome Staining Kit (Top, from AAT Bioquest, Cat# 22658), B: LysoTracker® Red DND-99 (Bottom, from Invitrogen) in a Costar black wall/clear bottom 96-well plate. The signals were compared at 5 cell passages (P1, P2, P3, P4 and P5) respectively using an Olympus fluorescence microscope.

### **Table 4.3 Lysosome Staining Probes**

| Cat. # | Product Name                                                                      | Size       | Ex (nm) | Em (nm) |
|--------|-----------------------------------------------------------------------------------|------------|---------|---------|
| 22655  | Cell Navigator™ lysosome staining kit *blue fluorescence*                         | 500 assays | 353     | 442     |
| 22659  | Cell Navigator™ lysosome staining kit *deep red fluorescence*                     | 500 assays | 596     | 619     |
| 22656  | Cell Navigator™ lysosome staining kit *green fluorescence*                        | 500 assays | 450     | 505     |
| 22651  | Cell Navigator™ lysosome staining kit *green fluorescence with 405 nm excitation* | 500 assays | 405     | 505     |
| 22652  | Cell Navigator™ lysosome staining kit *NIR fluorescence*                          | 500 assays | 636     | 650     |
| 22657  | Cell Navigator™ lysosome staining kit *orange fluorescence*                       | 500 assays | 542     | 556     |
| 22658  | Cell Navigator™ lysosome staining kit *red fluorescence*                          | 500 assays | 575     | 597     |
| 22642  | LysoBrite <sup>™</sup> Blue                                                       | 500 tests  | 353     | 442     |
| 22646  | LysoBrite™ Deep Red                                                               | 500 tests  | 596     | 619     |
| 22643  | LysoBrite™Green                                                                   | 500 tests  | 450     | 505     |
| 22641  | LysoBrite <sup>™</sup> NIR                                                        | 500 tests  | 636     | 650     |
| 22644  | LysoBrite <sup>™</sup> Orange                                                     | 500 tests  | 542     | 556     |
| 22645  | LysoBrite <sup>™</sup> Red                                                        | 500 tests  | 575     | 597     |

# 4.4 Mitochondrial Staining Probes

The mitochondrion is a membrane-enclosed organelle found in most eukaryotic cells. These organelles range from 0.5 to 1.0 µm in diameter. Mitochondria generate most of the cell's supply of ATP as a source of chemical energy. In addition to supplying cellular energy, mitochondria are involved in other tasks such as signaling, cellular differentiation, cell death, as well as the control of the cell cycle and cell growth. Mitochondria have been implicated in several human diseases, including mitochondrial disorders and cardiac dysfunction, and may play a role in the aging process. Several characteristics make mitochondria unique. The number of mitochondria in a cell varies widely by organism and tissue type. Many cells have only a single mitochondrion, whereas others can contain several thousand mitochondria. The organelle is composed of compartments that carry out specialized functions. Although most of a cell's DNA is contained in the cell nucleus, the mitochondrion has its own independent genome.

Cell Navigator<sup>™</sup> Mitochondrion Staining Kits are designed to label mitochondria of live cells with a full set of fluorescence colors. The kits use proprietary dyes that selectively accumulate in mitochondria probably via the mitochondrial membrane potential gradient. The mitochondrial indicators are retained in mitochondria for a long time and show good photostability. This key feature significantly increases the staining efficiency.

Besides our robust Cell Navigator<sup>™</sup> Mitochondrion Staining Kits, we also offer some common mitochondrial stains and probes (such as JC-1, TMRE, TMRM and rhodamine 123 etc). Both cyanine and rhodamine mitochondrial stains are positively charged, thus they are selectively located in mitochondria through the mitochondrial membrane potential. Among them JC-1 is primarily used for monitoring the mitochondrial membrane potentials of apoptotic cells. We offer JC-10<sup>™</sup> as a superior replacement to JC-1. JC-10 has better water solubility and larger response than JC-1. TMRE and TMRM are primarily used for monitoring cell mitochondrial membrane potential changes.

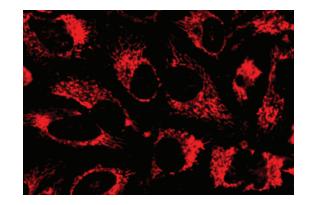
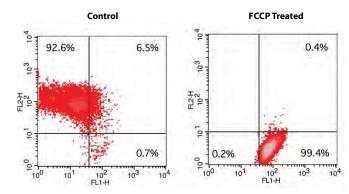




Figure 4.8. Image of HeLa cells stained with Cell Navigator™ Mitochondrion Staining Kit (Cat# 22668) in a Costar black 96-well plate.



**Figure 4.9.** FCCP-induced mitochondrial membrane potential changes in Jurkat cells. Jurkat cells were dye loaded with JC-10<sup>TM</sup> dye-loading solution along with DMSO (left) or 20  $\mu$ M FCCP (right) for 10 minutes. The fluorescence intensities for both J-aggregates and monomeric forms of JC-10<sup>TM</sup> were measured with FACSCalibur<sup>TM</sup> flow cytometer (Becton Dickinson) using FL1 and FL2 channels after compensation. 4

| Cat # | Product Name                                                                            | Size       | Ex (nm) | Em (nm) |
|-------|-----------------------------------------------------------------------------------------|------------|---------|---------|
| 22666 | Cell Navigator™ mitochondrion staining kit *green fluorescence*                         | 500 assays | 498     | 520     |
| 22669 | Cell Navigator™ mitochondrion staining kit *NIR fluorescence*                           | 500 assays | 640     | 659     |
| 22667 | Cell Navigator™ mitochondrion staining kit *orange fluorescence*                        | 500 assays | 545     | 575     |
| 22673 | Cell Navigator™ mitochondrion staining kit *orange fluorescence with 405 nm excitation* | 500 assays | 399     | 550     |
| 22668 | Cell Navigator™ mitochondrion staining kit *red fluorescence*                           | 500 assays | 575     | 600     |
| 22200 | JC-1 [5,5,6,6-Tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide]          | 5 mg       | 515     | 529     |
| 22201 | JC-1 [5,5,6,6-Tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide]          | 50 mg      | 515     | 529     |
| 22204 | JC-10 *superior alternative to JC-1*                                                    | 5x100 μL   | 510     | 525     |
| 22210 | Rhodamine 123                                                                           | 25 mg      | 507     | 529     |
| 22220 | TMRE [tetramethylrhodamine ethyl ester]                                                 | 25 mg      | 549     | 574     |
| 22221 | TMRM [tetramethylrhodamine methyl ester]                                                | 25 mg      | 549     | 573     |

### **Table 4.4 Mitochondrial Staining Probes**

# 4.5 iFluor™ Phalloidin Conjugates for Labeling F-actins

Actin is a globular, roughly 42-kDa protein found in almost all eukaryotic cells. It is also one of the most highly-conserved proteins, differing by no more than 20% in species as diverse as algae and humans. Actin is the monomeric subunit of two types of filaments in cells: microfilaments, one of the three major components of the cytoskeleton, and thin filaments, part of the contractile apparatus in muscle cells. Thus, actin participates in many important cellular processes including muscle contraction, cell motility, cell division and cytokinesis, vesicle and organelle movement, cell signaling, as well as the establishment and maintenance of cell junctions and cell shape.

AAT Bioguest offers a variety of fluorescent phalloidin derivatives with different colors for multicolor imaging of F-actin. Fluorescent derivatives of phalloidin have turned out to be enormously useful in localizing actin filaments in living or fixed cells as well as for visualizing individual actin filaments in vitro. Fluorescent phalloidin derivatives have been used as an important tool in the study of actin networks at high resolution. Used at nanomolar concentrations, phalloidin derivatives are convenient probes for labeling, identifying and quantitating F-actins in formaldehyde-fixed and permeabilized tissue sections, cell cultures or cell-free experiments. Phalloidin binds to actin filaments much more tightly than to actin monomers, leading to a decrease in the rate constant for the dissociation of actin subunits from filament ends, essentially stabilizing actin filaments through the prevention of filament depolymerization. Moreover, phalloidin is found to inhibit the ATP hydrolysis activity of F-actin. Phalloidin functions differently at various concentrations in cells. When introduced into the cytoplasm at low concentrations, phalloidin recruits the less polymerized forms of cytoplasmic actin as well as filamin into stable "islands" of aggregated actin polymers, yet it does not interfere with stress fibers, i.e. thick bundles of microfilaments.

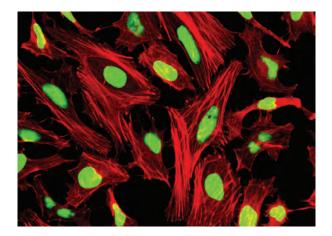



Figure 4.10. Image of HeLa cells. Actin filaments were stained with Phalloidin-iFluor™ 680 conjugate (red, Cat# 23128), and nuclei were stained with Nuclear Green™ DCS1 (green, Cat#17550).

### Table 4.5 Phalloidin-iFluor™ Conjugates

| Cat # | Product Name                                 | Size      | Ex (nm) | Em (nm) |
|-------|----------------------------------------------|-----------|---------|---------|
| 23100 | Phalloidin-AMCA conjugate                    | 300 tests | 353     | 442     |
| 23103 | Phalloidin-California Red conjugate          | 300 tests | 583     | 605     |
| 23101 | Phalloidin-Fluorescein conjugate             | 300 tests | 492     | 518     |
| 23110 | Phalloidin-iFluor™ 350 conjugate             | 300 tests | 353     | 442     |
| 23111 | Phalloidin-iFluor™ 405 conjugate             | 300 tests | 400     | 421     |
| 23115 | Phalloidin-iFluor™ 488 conjugate             | 300 tests | 493     | 517     |
| 23116 | Phalloidin-iFluor™ 514 conjugate             | 300 tests | 520     | 547     |
| 23117 | Phalloidin-iFluor™ 532 conjugate             | 300 tests | 542     | 558     |
| 23119 | Phalloidin-iFluor™ 555 conjugate             | 300 tests | 556     | 574     |
| 23122 | Phalloidin-iFluor™ 594 conjugate             | 300 tests | 590     | 618     |
| 23125 | Phalloidin-iFluor™ 633 conjugate             | 300 tests | 634     | 649     |
| 23127 | Phalloidin-iFluor™ 647 conjugate             | 300 tests | 650     | 665     |
| 23128 | Phalloidin-iFluor™ 680 conjugate             | 300 tests | 681     | 698     |
| 23129 | Phalloidin-iFluor™ 700 conjugate             | 300 tests | 692     | 708     |
| 23130 | Phalloidin-iFluor™ 750 conjugate             | 300 tests | 752     | 778     |
| 23131 | Phalloidin-iFluor™ 790 conjugate             | 300 tests | 787     | 808     |
| 23102 | Phalloidin-Tetramethylrhodamine<br>conjugate | 300 tests | 546     | 575     |

Cell Navigator<sup>™</sup> F-Actin Labeling Kits are designed to label F-actins in fixed cells. The kits use fluorescent phalloidin conjugates that are selectively bound to F-actins. The fluorescent phalloidin conjugates are high-affinity probes for F-actins. When used at nanomolar concentrations, phallotoxins are convenient probes for labeling, identifying and quantitating F-actins in formaldehyde-fixed and permeabilized tissue sections, cell cultures or cell-free experiments. The kits provide all the essential components with an optimized staining protocol, which is robust requiring minimal hands-on time.

### **Table 4.6 F-actin Labeling Kits**

| Cat. # | Product Name                                               | Size  | Ex<br>(nm) | Em<br>(nm) |
|--------|------------------------------------------------------------|-------|------------|------------|
| 22660  | Cell Navigator™ F-actin labeling kit *blue fluorescence*   | 1 kit | 353        | 442        |
| 22661  | Cell Navigator™ F-actin labeling kit *green fluorescence*  | 1 kit | 498        | 520        |
| 22663  | Cell Navigator™ F-actin labeling kit *orange fluorescence* | 1 kit | 546        | 575        |
| 22664  | Cell Navigator™ F-actin labeling kit *red fluorescence*    | 1 kit | 583        | 603        |

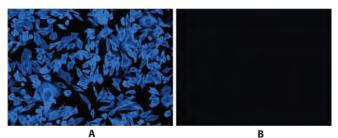



Figure 4.11. Images of fixed CPA cells stained with Cell Navigator<sup>™</sup> F-Actin Labeling Kit (Cat# 22660) in a 96-well Costar black wall/clear bottom plate A: Label the cells with 1X Phalloidin-iFluor<sup>™</sup> 350 for 30 minutes only. B: Treat the cells with phalloidin for 10 minutes, then stain them with 1X Phalloidin-iFluor<sup>™</sup> 350 for 30 minutes.

# **Reporter Gene Analysis**

Unless otherwise specified, all products are for Research Use Only. Not for use in diagnostic or therapeutic procedures.

# reporter gene assay kits at-a-glance\*

| Reporter Gene                    | Fluorescence | Luminescence        |
|----------------------------------|--------------|---------------------|
| Beta-Galactosidase Assay (LacZ)  | 12601        |                     |
| Firefly Luciferase Reporter Gene |              | 12518, 12519 &12520 |
| Gaussia Luciferase Reporter Gene |              | 12530, 12531 &12532 |
| Renilla Luciferase Reporter Gene |              | 12535, 12536 &12537 |

\* products listed by catalog number

# **Reporter Gene Analysis**

# 5.1 Firefly Luciferase Reporter Gene Assay

The most versatile and common reporter gene is the luciferase of the North American firefly photinus pyralis. The protein requires no posttranslational modification for enzyme activity. It is not even toxic in high concentration (*in vivo*) and can be used in pro- and eukaryotic cells.

AAT Bioquest Amplite<sup>™</sup> Luciferase Reporter Gene Assay Kits use a proprietary DTT-free formulation to quantify luciferase activity in live cells and cell extracts. The assay is based on firefly luciferase, a monomeric 61 kD enzyme that catalyses a two-step oxidation of luciferin, which yields light at 560 nm. Our formulation generates a luminescent product that gives strong luminescence upon interaction with luciferase. The kits provide all the essential components with an optimized "mix and read" assay protocol that is compatible with HTS liquid handling instruments. They have high sensitivity and can be used for the assays that require low detection limit. The kits have a fast, simple, and homogeneous bioluminescence assay for studying gene regulation and function. The assay is compatible with the use of standard cell growth media.

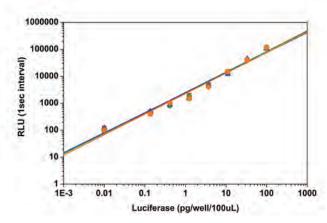



Figure 5.1. Luciferase dose responses were measured with Amplite<sup>™</sup> Luciferase Reporter Gene Assay Kit (Cat# 12518). The kit can detect as low as 0.1 pg/well luciferase with 20-minute to 5-hour incubation without losing signal intensity. The integration time is 1 second. The half life is more than 4 hours.

# 5.2 Gaussia Luciferase Reporter Gene Assay

The most versatile reporter gene is the firefly luciferase. Recently there is steadily increasing use of other luciferases, such as Gaussia luciferase since these reporters are smaller and do not require the presence of ATP. Gaussia luciferase is a 20 kD protein which catalyzes coelenterazine oxidation by oxygen to produce light. The bioluminescent enzyme derived from the marine copepod Gaussia princeps is efficiently secreted from mammalian cells upon expression.

AAT Bioquest Amplite<sup>™</sup> Gaussia Luciferase Reporter Gene Assay Kits use a proprietary luminogenic formulation to quantify luciferase activity in cell medium. The formulation generates a luminescent product that gives strong luminescence upon interaction with Gaussia luciferase. The kits provide all the essential components that are compatible with HTS liquid handling instruments. They have high sensitivity and can be performed in convenient 96-well and 384-well microtiter-plate formats. The "glow-type" signal with a half-life of one hour provides a consistent signal across large number of assay plates. The assay is compatible with standard cell growth media.

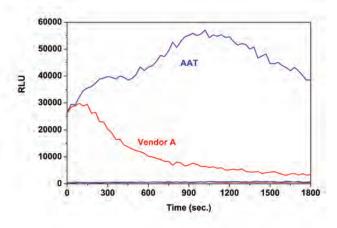
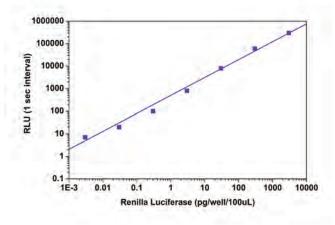



Figure 5.2. Secreted Gaussia luciferase culture medium was measured with Amplite™ Gaussia Luciferase Reporter Gene Assay Kit (blue line, Cat# 12530) and a commercially available Gaussia Luciferase Assay Kit (red line) respectively in a 96-well white plate using a NOVOstar plate reader (BMG Labtech).


| Cat. # | Product Name                                              | Size       | Em (nm) |
|--------|-----------------------------------------------------------|------------|---------|
| 12530  | Amplite™ Gaussia luciferase reporter gene assay kit       | 1 plate    | 466     |
| 12531  | Amplite™ Gaussia luciferase reporter gene assay kit       | 10 plates  | 466     |
| 12532  | Amplite™ Gaussia luciferase reporter gene assay kit       | 100 plates | 466     |
| 12518  | Amplite™ luciferase reporter gene assay kit *bright glow* | 1 plate    | 533     |
| 12519  | Amplite™ luciferase reporter gene assay kit *bright glow* | 10 plates  | 533     |
| 12520  | Amplite™ luciferase reporter gene assay kit *bright glow* | 100 plates | 533     |

### Table 5.1 Firefly and Gaussia Luciferase Reporter Gene Assay Kits

# 5.3 Renilla Luciferase Reporter Gene Assay

Common reporter genes include beta-galactosidase, beta-glucuronidase and luciferase. The most versatile reporter gene is the firefly luciferase. Recently there is steadily increasing use of other luciferases, such as Renilla luciferase since these reporters are smaller and do not require the presence of ATP.

Amplite<sup>™</sup> Renilla Luciferase Reporter Gene Assay Kit is designed to provide a fast and sensitive method to detect the luciferase from sea pansy (Renilla reniformis). It uses a proprietary luminogenic formulation to quantify Renilla luciferase activity in cell-based assays. Our formulation generates a luminescent product that gives strong luminescence upon interaction with Renilla luciferase. The kit provides all the essential components. It has high sensitivity and can be performed in a convenient 96-well and 384-well microtiter-plate format. The "glow-type" signal with a half-life of one hour provides a consistent signal across large number of assay plates. The assay is compatible with standard cell growth media. This kit enables the measurement of primary expression or gene expression with wild type and the synthetic *hRluc* genes.



**Figure 5.3.** Renilla Luciferase dose responses were measured with Amplite™ Renilla Luciferase Reporter Gene Assay Kit (Cat# 12535) in a 96-well solid black plate with a NOVOstar plate reader (BMG Labtech). As low as 1pg/mL (0.1pg/well/100uL) Renilla luciferase was detected with 30-minutes incubation (n=3).

#### **Table 5.2 Renilla Luciferase Reporter Gene Assay Kits**

| Cat. # | Product Name                                                         | Size       | Em (nm) |
|--------|----------------------------------------------------------------------|------------|---------|
| 12535  | Amplite™ Renilla luciferase reporter gene assay<br>kit *bright glow* | 1 plate    | 466     |
| 12536  | Amplite™ Renilla luciferase reporter gene assay<br>kit *bright glow* | 10 plates  | 466     |
| 12537  | Amplite™ Renilla luciferase reporter gene assay<br>kit *bright glow* | 100 plates | 466     |

# 5.4 Fluorimetric Beta-Galactosidase Assay

E. coli  $\beta$ -galactosidase is a 464 kD tetramer. Each unit of  $\beta$ -galactosidase consists of five domains, the third of which is the active site. It is an essential enzyme in cells. Deficiencies of this enzyme can result in galactosialidosis or Morquio B syndrome. In E. coli,  $\beta$ -galactosidase is produced by the activation of LacZ operon. Detection of LacZ expression has become routine to the point of detection of as few as 5 copies of  $\beta$ -galactosidase per cell.

Amplite<sup>™</sup> Fluorimetric Beta-Galactosidase Assay Kit uses the fluorogenic fluorescein digalactoside (FDG) galactosidase substrate that can sensitively distinguish LacZ+ from LacZ- cells. The nonfluorescent substate generates the strongly fluorescent fluorescein upon reaction with galactosidase. It can be used either for detecting galactosidase conjugates in ELISA type assay systems or for monitoring LacZ gene expression in cells. FDG used in the kit is not fluorescent. The galactosidase induced cleavage of FDG gives fluorescein that has the spectra of Ex/Em = 490/515 nm, which can be detected with most fluorescence instruments equipped with a FITC filter set. The kit comes with all the essential components with an optimized assay protocol. It can be used with a fluorescence microplate reader, a fluorescence microscope, or a flow cytometer. It might also be used for screening galactosidase inhibitors or inducers.

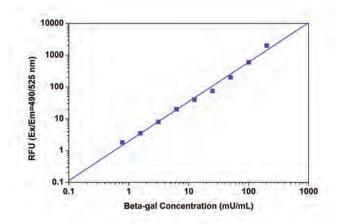


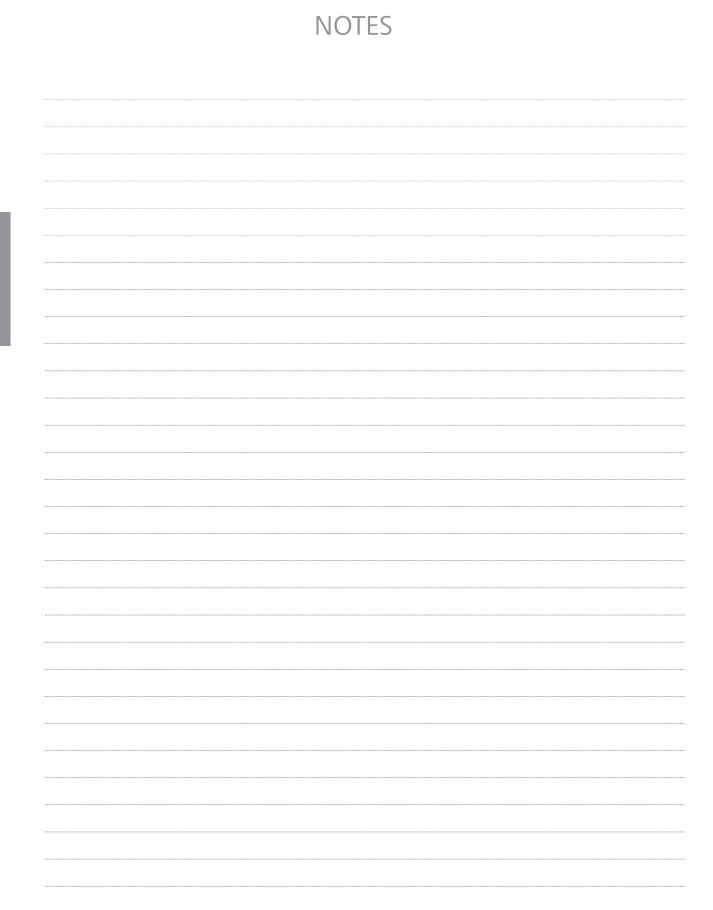

Figure 5.4. β-galactosidase dose responses were measured with Amplite™ Fluorimetric Beta-Galactosidase Assay Kit (Cat# 12601) in a Costar 96-well black solid plate using Gemini fluorescence microplate reader (Molecular Devices). As low as 0.3 mU/well β-galactosidase was detected with 30-minute incubation.

#### **Table 5.3 Fluorimetric Beta-Galactosidase Assay**

| Cat. # | Product Name                                                               | Size          | Ex (nm) | Em (nm) |
|--------|----------------------------------------------------------------------------|---------------|---------|---------|
| 12601  | Amplite™ fluorimetric Beta-galactosidase<br>assay kit *green fluorescence* | 500<br>assays | 490     | 514     |



# **Alphabetical Index**


| PRODUCT NAME                                                     | PAGE |
|------------------------------------------------------------------|------|
| 7-AAD [7-Aminoactinomycin D]                                     | 28   |
| Amine-reactive iFluor™dyes                                       | 7    |
| Amine-reactive mFluor <sup>™</sup> dyes                          | 8    |
| Amplite <sup>™</sup> fluorimetric beta-galactosidase assay kit   | 36   |
| Amplite <sup>™</sup> gaussia luciferase reporter gene assay kits | 35   |
| Amplite <sup>™</sup> luciferase reporter gene assay kits         | 35   |
| Amplite <sup>™</sup> renilla luciferase reporter gene assay kits | 36   |
| AP-streptavidin conjugate                                        | 15   |
| APC-iFluor <sup>™</sup> 750-streptavidin conjugate               | 15   |
| APC-streptavidin conjugate                                       | 15   |
| APC-iFluor <sup>™</sup> 750-streptavidin conjugate               | 15   |
| Calcein AM                                                       | 19   |
| Calcein Blue AM                                                  | 19   |
| Calcein Orange™                                                  | 19   |
| Calcein Red™                                                     | 19   |
| Cell Explorer™ fixable dead cell staining kits                   | 21   |
| Cell Explorer™ live cell labeling kits                           | 19   |
| Cell Explorer™ live cell tracking kits                           | 20   |
| Cell Meter™ fluorimetric cell cycle assay kits                   | 24   |
| Cell Navigator™ lysosome staining kits                           | 30   |
| Cell Navigator™ mitochondrion staining kits                      | 31   |
| Cell Navigator™ F-actin labeling kits                            | 32   |
| CFSE                                                             | 23   |
| CytoCalcein™ Violet 450                                          | 19   |
| CytoCalcein™ Violet 500                                          | 19   |
| CytoTell™ Blue                                                   | 23   |
| CytoTell™ Green                                                  | 23   |
| CytoTell™ Orange                                                 | 23   |
| CytoTell™ Red                                                    | 23   |
| DAPI                                                             | 28   |
| DiD                                                              | 29   |
| Dil iodide                                                       | 29   |
| Dil perchlorate                                                  | 29   |
| Dil triflate                                                     | 29   |
| DilC <sub>1</sub> (5) iodide                                     | 29   |
| DilC <sub>12</sub> (3)-DS                                        | 29   |
| DilC <sub>12</sub> (3) perchlorate                               | 29   |

| PRODUCT NAME                                                    | PAGE |
|-----------------------------------------------------------------|------|
| DilC <sub>12</sub> (5)-DS                                       | 29   |
| DilC <sub>16</sub> (3) perchlorate                              | 29   |
| DilC <sub>18</sub> (3)-DS                                       | 29   |
|                                                                 | 29   |
| Di0 perchlorate                                                 | 29   |
| DiOC <sub>2</sub> (3) iodide                                    | 29   |
| DiOC <sub>3</sub> (3) iodide                                    | 29   |
| DiOC <sub>5</sub> (3) iodide                                    | 29   |
| DiOC <sub>6</sub> (3) iodide                                    | 29   |
| <br>DiOC <sub>7</sub> (3) iodide                                | 29   |
| DiOC <sub>16</sub> (3) perchlorate                              | 29   |
| DiRiodide                                                       | 29   |
| <br>DiSC <sub>2</sub> (3)                                       | 29   |
|                                                                 | 29   |
| <br>DiSC <sub>3</sub> (5)                                       | 29   |
| FluoroQuest <sup>™</sup> anti-fading kit l                      | 16   |
| FluoroQuest™ anti-fading kit II                                 | 16   |
| FluoroQuest <sup>™</sup> fluorescence signal enhancing solution | 16   |
| FluoroQuest™ mounting medium with DAPI                          | 16   |
| Hoechst 33258                                                   | 28   |
| Hoechst 33342                                                   | 28   |
| HRP-streptavidin conjugate                                      | 15   |
| iFluor™ dye-labeled secondary antibodies                        | 12   |
| iFluor™ dye-labeled streptavidins                               | 14   |
| JC-1                                                            | 31   |
| JC-10                                                           | 31   |
| LDS 751                                                         | 28   |
| mFluor <sup>™</sup> dye-labeled streptavidins                   | 14   |
| mFluor™Blue 570 SE                                              | 8    |
| mFluor™Green 620 SE                                             | 8    |
| mFluor <sup>™</sup> Red 700 SE                                  | 8    |
| mFluor <sup>™</sup> Red 780 SE                                  | 8    |
| mFluor™Violet 450 SE                                            | 8    |
| mFluor <sup>™</sup> Violet 510 SE                               | 8    |
| mFluor™Violet 540 SE                                            | 8    |
| mFluor™Yellow 630 SE                                            | 8    |
| Nile Red                                                        | 29   |
|                                                                 |      |

| PRODUCT NAME                                                             | PAGE |
|--------------------------------------------------------------------------|------|
| Nuclear Green™ DCS1                                                      | 28   |
| Nuclear Green <sup>™</sup> LCS1                                          | 19   |
| Nuclear Orange <sup>™</sup> DCS1                                         | 28   |
| Nuclear Orange <sup>™</sup> LCS1                                         | 19   |
| Nuclear Red <sup>™</sup> DCS1                                            | 28   |
| Nuclear Red <sup>™</sup> LCS1                                            | 19   |
| PerCP-streptavidin conjugate                                             | 15   |
| Phalloidin-AMCA conjugate                                                | 32   |
| Phalloidin-California Red conjugate                                      | 32   |
| Phalloidin-Fluorescein conjugate                                         | 32   |
| Phalloidin-iFluor™ conjugates                                            | 32   |
| Phalloidin-Tetramethylrhodamine conjugate                                | 32   |
| Pluronic® F-127 *10% solution in water*                                  | 16   |
| Pluronic® F-127 *20% solution in DMSO*                                   | 16   |
| Probenecid                                                               | 16   |
| Propidium iodide                                                         | 28   |
| ReadiLink™ iFluor™ antibody labeling kits                                | 9    |
| ReadiLink <sup>™</sup> APC antibody labeling kit                         | 10   |
| ReadiLink™BSA conjugation kit                                            | 10   |
| ReadiLink <sup>™</sup> FITC antibody labeling kit                        | 10   |
| ReadiLink™ iFluor™ 350 antibody labeling kit                             | 9    |
| ReadiLink™ iFluor™ 488 antibody labeling kit                             | 9    |
| ReadiLink™ iFluor™555 antibody labeling kit                              | 9    |
| ReadiLink™ iFluor™594 antibody labeling kit                              | 9    |
| ReadiLink™ iFluor™633 antibody labeling kit                              | 9    |
| ReadiLink™ iFluor™647 antibody labeling kit                              | 9    |
| ReadiLink™ iFluor™680 antibody labeling kit                              | 9    |
| ReadiLink™ iFluor™ 700 antibody labeling kit                             | 9    |
| ReadiLink™ iFluor™750 antibody labeling kit                              | 9    |
| ReadiLink™ iFluor™790 antibody labeling kit                              | 9    |
| ReadiLink™ KLH conjugation kit                                           | 10   |
| ReadiLink™mFluor™ Blue 570 antibody labeling kits                        | 10   |
| ReadiLink™mFluor™Green 620 antibody labeling kit                         | 10   |
| ReadiLink <sup>™</sup> mFluor <sup>™</sup> Red 700 antibody labeling kit | 10   |
| ReadiLink™mFluor™Red 780 antibody labeling kit                           | 10   |
| ReadiLink™mFluor™ Violet 420 antibody labeling kit                       | 10   |
| ReadiLink™ mFluor™ Violet 450 antibody labeling kit                      | 10   |

| PRODUCT NAME                                                                                          | PAGE |
|-------------------------------------------------------------------------------------------------------|------|
| ReadiLink™ mFluor™ Violet 510 antibody labeling kit                                                   | 10   |
| ReadiLink™ mFluor™ Violet 540 antibody labeling kit                                                   | 10   |
| ReadiLink <sup><math>M</math></sup> mFluor <sup><math>M</math></sup> Yellow 630 antibody labeling kit | 10   |
| ReadiLink <sup>™</sup> PerCP antibody labeling kit                                                    | 10   |
| ReadiLink™ protein biotinylation kit                                                                  | 10   |
| ReadiLink™RPE antibody labeling kit                                                                   | 10   |
| ReadiLink™ trFluor™ Eu antibody labeling kit                                                          | 10   |
| ReadiLink ${}^{\rm TM}$ trFluor ${}^{\rm TM}$ Tb protein labeling kit                                 | 10   |
| ReadiUse <sup>™</sup> 4% formaldehyde fixation solution                                               | 16   |
| ReadiUse™mammalian cell lysis buffer                                                                  | 16   |
| ReadiUse™microscope mounting solution                                                                 | 16   |
| ReadiUse™probenecid, sodium salt                                                                      | 16   |
| ReadiUse™probenecid                                                                                   | 16   |
| Rhodamine 123                                                                                         | 31   |
| RPE-iFluor™647-streptavidin conjugate                                                                 | 15   |
| RPE-iFluor™750-streptavidin conjugate                                                                 | 15   |
| RPE-streptavidin conjugate                                                                            | 15   |
| Thiol-reactive iFluor <sup>™</sup> dyes                                                               | 7    |
| TMRE                                                                                                  | 31   |
| TMRM                                                                                                  | 31   |
| trFluor™Eu goat anti-mouse IgG (H+L)                                                                  | 13   |
| trFluor™Eu goat anti-rabbit IgG (H+L)                                                                 | 13   |
| trFluor™Eu goat anti-mouse IgG (H+L) *cross adsorbed*                                                 | 13   |
| trFluor™Tb goat anti-mouse lgG (H+L)                                                                  | 13   |
| trFluor™Tb goat anti-mouse IgG (H+L) *cross adsorbed*                                                 | 13   |
| trFluor™Tb goat anti-rabbit IgG (H+L)                                                                 | 13   |
| trFluor™Tb goat anti-rabbit IgG (H+L) *cross adsorbed*                                                | 13   |
| trFluor™Eu-streptavidin conjugate                                                                     | 15   |
| trFluor™Tb-streptavidin conjugate                                                                     | 15   |

Index



Index





BIOMOL GmbH Waidmannstraße 35 · 22769 Hamburg · Germany info@biomol.de · www.biomol.de Fon: +49 (0)40-853 260 0 · Fax: +49 (0)40-853 260 22 TOLL FREE IN GERMANY: Fon: 0800-246 66 51 · Fax: 0800-246 66 52 FOR MORE INFORMATION GET OUR NEWSLETTER: www.biomol.de/newsletter.html