


Product ID S1846 CAS No. 606143-52-6 Chemical Name

Synonym AZD6244, ARRY 142886

Formula C₁₇H₁₅BrClFN₄O₃ Formula Wt. 457.68 Melting Point Purity ≥98% Solubility

Product Information

Bulk quanitites available upon request

Product ID	Size
S1846	1 mg
S1846	10 mg
S1846	50 mg

Store Temp Ambient

Ship Temp Ambient

Description Selumetinib is an orally bioavailable noncompetitive inhibitor of MEK1/2; it primarily displays immunosuppressive and anticancer chemotherapeutic activities. In cellular and animal models of cancer, selumetinib downregulates MAPK activation and mTOR phosphorylation and upregulates caspases 3 and 7, resulting in caspase-mediated apoptosis and inhibition of tumor growth. In an animal model of graft versus host disease (GVHD), selumetinib inhibits alloreactivity through inhibition of naïve and less-differentiated T cells. Additionally, this compound decreased serum creatine phosphokinase and aspartate aminotransferase to inhibit skeletal muscle pathology and increase muscle function in an animal model of muscular dystrophy.

References Paolo M, Assunta S, Antonio R, et al. Selumetinib in Advanced Non Small Cell Lung Cancer (NSCLC) Harbouring KRAS Mutation: Endless Clinical Challenge to KRAS-mutant NSCLC. Rev Recent Clin Trials. 2013 Jun;8(2):93-100. PMID: 24063423.

Muchir A, Kim YJ, Reilly SA, et al. Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutation. Skelet Muscle. 2013 Jul 1;3(1):17. PMID: 23815988.

Shindo T, Kim TK, Benjamin CL, et al. MEK inhibitors selectively suppress alloreactivity and graft-versus-host disease in a memory stage-dependent manner. Blood. 2013 Jun 6;121(23):4617-26. PMID: 23575444.

Sabnis GJ, Kazi A, Golubeva O, et al. Effect of selumetinib on the growth of anastrozole-resistant tumors. Breast Cancer Res Treat. 2013 Apr;138(3):699-708. PMID: 23508762.

Huynh H, Soo KC, Chow PK, et al. Targeted inhibition of the extracellular signal-regulated kinase kinase pathway with AZD6244 (ARRY-142886) in the treatment of hepatocellular carcinoma. Mol Cancer Ther. 2007 Jan;6(1):138-46. PMID: 17237274.

Caution: This product is intended for laboratory and research use only. It is not for human or drug use.